
srsRAN Project Documentation

[’Software Radio Systems’]

Feb 21, 2024

GENERAL

1 Getting Started 2

2 Features and Roadmap 3

3 Contribution Guidelines 4

4 Reporting 6

5 Release Notes 7

6 Installation Guide 9

7 Running srsRAN Project 12

8 Console Reference 14

9 Outputs 16

10 Configuration Reference 24

11 Grafana Metrics GUI 46

12 Troubleshooting 48

13 Software Architecture 50

14 Code Style Guide 65

15 Testing Policy 92

16 O-RAN gNB Overview 95

17 O-RAN gNB Components 99

18 gNB Interfaces 103

19 COTS UEs 108

20 srsRAN gNB with srsUE 116

21 srsRAN gNB with COTS UEs 142

22 srsRAN gNB with Amarisoft UE 160

i

23 srsRAN gNB on Kubernetes 178

24 srsRAN gNB with DPDK 189

25 O-RAN 7.2 RU Guide 195

26 O-RAN NearRT-RIC and xApp 209

27 MATLAB Testing Tools 225

ii

srsRAN Project Documentation

The srsRAN Project is an open-source 5G CU/DU from SRS.
It is a complete RAN solution compliant with 3GPP and O-RAN Alliance specifications. The srsRAN
Project includes the full L1/2/3 stack with minimal external dependencies. The software is portable
across processor architectures and scalable from low-power embedded systems to cloudRAN, providing
a powerful platform for mobile wireless research and development.

Get started with the srsRAN Project:

• Install srsRAN Project on your computer.

• Get up and running.

• More advanced users should read the Developers Guide.

• Get up to speed on 5G and OpenRAN with our Knowledge Base.

Useful resources:

• The srsRAN Project source code.

• Explore the srsRAN Project Discussions for news and user support.

• Discover the srsRAN Enterprise solution for Private 5G network deployments.

GENERAL 1

https://www.srs.io
https://github.com/srsran/srsRAN_project
https://github.com/srsran/srsran_project/discussions
https://srs.io/srsran-enterprise-5g/

CHAPTER

ONE

GETTING STARTED

Install srsRAN Project on your computer:
- Installation

Run srsRAN Project:
- Running

Read the configuration reference:
- Configuration reference

Take a look at the source code:
- srsRAN Project on GitHub

Join the community for news and user support:
- srsRAN Project Discussions

Learn about the team behind the srsRAN Project:
- Software Radio Systems

2

https://github.com/srsran/srsran_project
https://github.com/srsran/srsran_project/discussions
https://srs.io

CHAPTER

TWO

FEATURES AND ROADMAP

2.1 Current Features

• FDD/TDD supported, all FR1 bands

• 15/30 kHz subcarrier spacing

• All physical channels including PUCCH Format 1 and 2, excluding Sounding-RS

• Highly optimized LDPC and Polar encoder/decoder for ARM Neon and x86 AVX2/AVX512

• All RRC procedures excluding Handover

• All MAC procedures excluding power control

• Split 7.2 support using in-house OFH library

• Support for QAM-256

• 4x4 MIMO

• Slicing

2.2 Coming Soon

• Multi-cell support

• Handover

• CU/DU split deployment

3

CHAPTER

THREE

CONTRIBUTION GUIDELINES

Contributions to the srsRAN Project are always welcome. The easiest way to contribute is by issuing a
pull request on the srsRAN Project repository. Take a look at our code style guide and please follow our
testing policy.

We ask srsRAN Project contributors to agree to a Copyright License Agreement. This provides us with
necessary permissions to use contributed code. For more information, see the FAQ below.

3.1 FAQ

3.1.1 1. What is a Copyright License Agreement (CLA) and why do I need one?

A Copyright License Agreement is a legal document in which you state you are entitled to contribute
the code/documentation/translation to the project you’re contributing to and are willing to have it used in
distributions and derivative works. This means that should there be any kind of legal issue in the future
as to the origins and ownership of any particular piece of code, then that project has the necessary forms
on file from the contributor(s) saying they were permitted to make this contribution.

The CLA also ensures that once you have provided a contribution, you cannot try to withdraw permission
for its use at a later date. People and companies can therefore use that software, confident that they will
not be asked to stop using pieces of the code at a later date.

The agreements used by the srsRAN Project are standard documents provided by Project Harmony, a
community-centered group focused on contributor agreements for free and open source software (FOSS).
For more information, see www.harmonyagreements.org.

3.1.2 2. How do I complete and submit the CLA?

The srsRAN Project CLA for Individual contributions can be found here. The srsRAN Project CLA for
Entity contributions can be found here. Download the appropriate CLA, then print, sign and scan the
document before sending by email to licensing@srs.io.

4

https://github.com/srsran/srsran_project
mailto:licensing@srs.io

srsRAN Project Documentation

3.1.3 3. How will my contributions to the srsRAN Project be used?

The srsRAN Project was created and is maintained by Software Radio Systems (SRS), a private limited
company headquartered in Ireland. SRS provides the srsRAN Project under both the open-source AG-
PLv3 license and commercial licenses. SRS also sells proprietary software products which build upon
the srsRAN Project codebase. In this way, we attempt to ensure the ongoing development, evolution and
sustainability of the srsRAN Project.

Through the license agreements, we ask you to grant us permission to use your contributions within
the srsRAN Project and to continue to provide the srsRAN Project under open-source and commercial
licenses and within proprietary products. As we do not ask for copyright assignment, you retain complete
ownership of your contributions and have the same rights to use or license those contributions which you
would have had without entering into a license agreement.

3.1.4 4. If I do not own the copyright in the entire work of authorship?

If you do not own the copyright in the entire work of authorship, you can only contribute the work if the
third-party works have been submitted separately by the upsream owner or under the upstream license.

If you have any questions about srsRAN Project licensing and contributions, please contact us at licens-
ing@srs.io

3.1. FAQ 5

mailto:licensing@srs.io
mailto:licensing@srs.io

CHAPTER

FOUR

REPORTING

4.1 Issues

For contributing code and reporting issues, use Github’s pull request or issue tracking system.

4.2 Vulnerabilities

For issues or fixes that could potentially affect software security, please use the dedicated
security@srs.io email for submissions.
Our target initial response time for any vulnerability report is less than 7 days.

4.3 Support

For support and help using srsRAN Project, check out the community driven discussion forum.

6

https://github.com/srsran/srsran_project/pulls
https://github.com/srsran/srsran_project/issues
https://github.com/srsran/srsRAN_Project/discussions

CHAPTER

FIVE

RELEASE NOTES

5.1 23.10

• Added downlink MIMO (up to 4 layers)

• Added Open Fronthaul (OFH) interface for split 7.2 ORAN radio units (optionally using DPDK)

• Added E2 interface including KPM and RAN control (RC) service model

• Added Timing Advance support

• Added Docker files

• Expose many more config parameters

• Other bug-fixes and improved stability and performance in all part

5.2 23.5

• Updated ASN.1 of RRC/NGAP/F1AP/E1AP to 3GPP Release 17.4

• Add UE capability transfer procedure

• Add support for srsUE

• CSI-RS in Downlink

• Add virtual RF driver to use with Amarisoft UE

• Expose further config parameters

• Other bug-fixes and improved stability and performance in all parts

5.3 23.3 (initial public release)

• FDD/TDD supported, all FR1 bands

• 15/30 KHz subcarrier spacing

• All physical channels including PUCCH Format 1 and 2, excluding Sounding-RS

• Highly optimized LDPC and Polar encoder/decoder for ARM Neon and x86 AVX2/AVX512

• All RRC procedures excluding Mobility, Paging and Reestablishment

• All MAC procedures excluding power control

7

srsRAN Project Documentation

• Split 8 support using Ettus/NI USRPs

8 Chapter 5. Release Notes

CHAPTER

SIX

INSTALLATION GUIDE

The following steps need to be taken in order to download and build the srsRAN Project:

1. Install dependencies

2. Install RF driver

3. Clone the repository

4. Build the codebase

6.1 Build Tools and Dependencies

The srsRAN Project uses CMake and C++14. We recommend the following build tools:

• cmake

• gcc (v9.4.0 or later) OR Clang (v10.0.0 or later)

The srsRAN Project has the following necessary dependencies:

• libfftw

• libsctp

• yaml-cpp

• PolarSSL/mbedTLS

• googletest

You can install the required build tools and dependencies for various distributions as follows:

Ubuntu 22.04:

sudo apt-get install cmake make gcc g++ pkg-config libfftw3-dev libmbedtls-
→˓dev libsctp-dev libyaml-cpp-dev libgtest-dev

Fedora:

sudo yum install cmake make gcc gcc-c++ fftw-devel lksctp-tools-devel yaml-
→˓cpp-devel mbedtls-devel gtest-devel

Arch Linux:

9

https://cmake.org/
https://gcc.gnu.org/
https://clang.llvm.org/
https://www.fftw.org/
https://github.com/sctp/lksctp-tools
https://github.com/jbeder/yaml-cpp
https://www.trustedfirmware.org/projects/mbed-tls/
https://github.com/google/googletest/

srsRAN Project Documentation

sudo pacman -S cmake make base-devel fftw mbedtls yaml-cpp lksctp-tools gtest

It is also recommended users install the following (although they are not required):

• Ccache: This will help to speed up re-compilation

• backward-cpp: This library helps to generate more informative backtraces in the stdout if an error
occurs during runtime

6.2 RF-drivers

The srsRAN Project uses RF drivers to support different radio types.
Currently, only UHD is supported however additional drivers are under development:

• UHD

Note: We recommended the LTS version of UHD, i.e. either 3.15 or 4.0.

6.3 Clone and Build

First, clone the srsRAN Project repository:

git clone https://github.com/srsRAN/srsRAN_Project.git

Then build the code-base:

cd srsRAN_Project
mkdir build
cd build
cmake ../
make -j $(nproc)
make test -j $(nproc)

You can now run the gNB from srsRAN_Project/build/apps/gnb/. If you wish to install the srsRAN
Project gNB, you can use the following command:

sudo make install

The Running srsRAN Project section of the documentation further discusses how to configure and run
the gNB application.

10 Chapter 6. Installation Guide

https://ccache.dev/
https://github.com/bombela/backward-cpp
https://github.com/EttusResearch/uhd

srsRAN Project Documentation

6.4 Packages

srsRAN Project is available to download directly from packages for various linux distributions. Users
looking for a simple installation who do not wish to edit the source code should use the package instal-
lation.

6.4.1 Ubuntu

Ubuntu users can download the srsRAN Project packages using the following commands:

sudo add-apt-repository ppa:softwareradiosystems/srsran-project
sudo apt-get update
sudo apt-get install srsran-project -y

The application can then be run with the:

sudo gnb -c <config file>

6.4.2 Arch Linux

Arch Linux users can download the srsRAN Project packages using an AUR helper, e.g. ‘yay’, using the
following command:

yay -Sy srsran-project-git

This will build and install the latest version of srsRAN Project from git.

When installed from packages srsRAN Project example configs can be found in /usr/share/srsran.
For info on these config files, see here

6.5 PHY testvectors

A number of PHY tests are based on MATLAB generated testvectors. By default, those tests are disabled.
The following steps are required to enable them:

1. Download the PHY testvector set.

2. Copy the PHY testvectors to its location within srsRAN:

tar -xzf phy_testvectors.tar.gz -C /path_to_your_local_repository/srsgnb/

3. Enable the use of PHY testvectors by modifying the root CMakeLists.txt as shown below:

option(USE_PHY_TESTVECTORS "Enable testvector PHY tests" ON)

4. Rebuild srsRAN Project.

6.4. Packages 11

https://github.com/srsran/srsRAN_Project/releases

CHAPTER

SEVEN

RUNNING SRSRAN PROJECT

7.1 Baseline Requirements

To successfully run the srsRAN Project gNB you will need the following:

• A PC with a Linux based OS (Ubuntu 20.04 or later)

• A USRP device

• srsRAN Project (see the Installation Guide)

• A 3rd-party 5G core (we recommend Open5GS)

• A 3rd-party 5G UE

Recommended:

• External clock source

If you plan to connect the gNB to a COTS UE we recommend that you use an external clock source such
as an Octoclock or GPSDO that is compatible with your RF-frontend, as the on-board clock within the
USRP may not be accurate enough to enable a connection with the UE. This is discussed further in the
relevant app note.

7.2 System Preparation

Before running the gNB application, we recommend tuning your system for best performance. We pro-
vide a script to configure known performance parameters:

• srsran_performance

The script does the following:

1. Sets the scaling governor to performance

2. Disables DRM KMS polling

3. Tunes network buffers (Ethernet based USRPs only)

Run the script as follows from the main project folder:

sudo ./scripts/srsran_performance

12

https://github.com/open5gs/open5gs
https://github.com/srsran/srsRAN_Project/tree/main/scripts/srsran_performance

srsRAN Project Documentation

7.3 Running the gNB

If the gNB has been installed using sudo make install or installed from packages then you will be
able to run the gNB from anywhere on your machine.
If you built the gNB from source and have not installed it, then you can run the gNB from:
/srsRAN_Project/build/apps/gnb. In this folder you will find the gNB application binary.

Run the gNB as follows, passing the YAML configuration file:

sudo gnb -c gnb_rf_b200_tdd_n78_10mhz.yml

Run the gNB with sudo to ensure threads are configured with the correct priority.
Run the gNB with an explicit configuration file. See the configuration reference for more details.
Example configuration files can be found in the configs/ folder in the srsRAN Project codebase.

When running, the gNB should generate the following console output:

Available radio types: uhd.

--== srsRAN gNB (commit 77be7d339) ==--

[INFO] [UHD] linux; GNU C++ version 9.4.0; Boost_107100; UHD_4.2.0.HEAD-0-
→˓g197cdc4f
Making USRP object with args 'type=b200'
Cell pci=1, bw=10 MHz, dl_arfcn=632628 (n78), dl_freq=3489.42 MHz, dl_ssb_
→˓arfcn=632640, ul_freq=3489.42 MHz

==== gNodeB started ===
Type <t> to view trace

Entering t will enable the console trace, see here for more details.

Configuration parameters can also be passed on the command line. To see the list of options, use:

./gnb --help

7.3. Running the gNB 13

CHAPTER

EIGHT

CONSOLE REFERENCE

The gNB application runs in the console. When running, type t in the console to enable the metrics
trace.

A sample output showing bi-directional traffic can be seen here:

-------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 15 28 139M 867 0 0% | 29.4 28 133M 779 0 0% ␣

→˓150k
1 4601 15 28 138M 851 10 1% | 29.5 28 121M 704 6 0% ␣

→˓150k
1 4601 15 28 138M 863 0 0% | 29.5 28 133M 778 0 0% ␣

→˓150k
1 4601 15 28 139M 869 0 0% | 29.3 28 134M 781 0 0% ␣

→˓150k
1 4601 15 28 130M 800 10 1% | 29.8 28 131M 745 2 0% ␣

→˓150k
1 4601 15 28 138M 855 8 0% | 29.3 28 134M 772 4 0% ␣

→˓150k
1 4601 15 28 138M 865 0 0% | 28.7 28 133M 778 0 0% ␣

→˓150k
1 4601 15 28 137M 848 11 1% | 29.7 28 133M 767 2 0% ␣

→˓150k
1 4601 15 28 135M 838 4 0% | 29.6 28 132M 749 4 0% ␣

→˓150k
1 4601 15 28 139M 867 0 0% | 29.3 28 133M 779 0 0% ␣

→˓150k
1 4601 15 28 139M 867 0 0% | 29.6 28 133M 778 0 0% ␣

→˓150k

Metrics are provided on a per-UE basis. The following metrics are provided:

pci
Physical Cell Identifier

rnti
Radio Network Temporary Identifier (UE identifier)

cqi
Channel Quality Indicator reported by the UE (1-15)

14

https://www.sharetechnote.com/html/Handbook_LTE_PCI.html
https://www.sharetechnote.com/html/5G/5G_RNTI.html
https://www.sharetechnote.com/html/Handbook_LTE_CQI.html

srsRAN Project Documentation

mcs
Modulation and coding scheme (0-28)

brate
Bitrate (bits/sec)

ok
Number of packets successfully sent

nok
Number of packets dropped

(%)
% of packets dropped

pusch
PUSCH SINR (Signal-to-Interference-plus-Noise Ratio)

bsr
Buffer Status Report - data waiting to be transmitted as reported by the UE (bytes)

15

https://www.sharetechnote.com/html/5G/5G_MCS_TBS_CodeRate.html
https://www.sharetechnote.com/html/Handbook_LTE_BSR.html

CHAPTER

NINE

OUTPUTS

9.1 Logs

The srsRAN Project gNB application provides a highly configurable logging mechanism, with per-layer
and per-component log levels.
Set the log file path and log levels in the gNB config file. See the Configuration Reference for more
details.

The format used for all log messages is as follows:

Timestamp [Layer] [Level] [TTI] message

Where the fields are:

• Timestamp in YYYY-MM-DDTHH:MM:SS.UUUUUU format at which log message was generated

• Layer can be one of MAC/RLC/PDCP/RRC/SDAP/NGAP/GTPU/RADIO/FAPI/F1U/DU/CU/LIB.
PHY layers are specified as downlink or uplink and with executor number e.g. DL-PHY1.

• Level can be one of E/W/I/D for error, warning, info and debug respectively.

• TTI is only shown for PHY or MAC messages and is in the format SFN.sn where SFN is System
Frame Number and sn is slot number.

An example log file excerpt can be seen below:

2023-03-15T18:29:25.142200 [MAC] [I] [276.14] UL PDU rnti=0x4601 ue=0␣
→˓subPDUs: [lcid=1: len=96, SBSR: lcg=0 bs=0, SE_PHR: total_len=3, PAD:␣
→˓len=424]
2023-03-15T18:29:25.142204 [RLC] [I] ue=0 SRB1 UL: RX PDU. pdu_len=96␣
→˓dc=data p=1 si=full sn=0 so=0
2023-03-15T18:29:25.142226 [PDCP] [I] ue=0 SRB1 UL: RX PDU. type=data pdu_
→˓len=94 sn=0 count=0
2023-03-15T18:29:25.142228 [PDCP] [I] ue=0 SRB1 UL: RX SDU. count=0
2023-03-15T18:29:25.142245 [RRC] [D] ue=0 SRB1 - Rx DCCH UL␣
→˓rrcSetupComplete (88 B)
2023-03-15T18:29:25.142249 [RRC] [D] Content: [

{
"UL-DCCH-Message": {

"message": {
"c1": {

(continues on next page)

16

srsRAN Project Documentation

(continued from previous page)

"rrcSetupComplete": {
"rrc-TransactionIdentifier": 0,
"criticalExtensions": {

"rrcSetupComplete": {
"selectedPLMN-Identity": 1,
"registeredAMF": {

"amf-Identifier": "000000100000000001000000"
},
"guami-Type": "native",
"dedicatedNAS-Message":

→˓"7e01820be950137e004139000bf200f110020040e7000f272e04f070f0707100307e004139000bf200f110020040e7000f27100200402e04f070f0702f0201015200f11000000718010074000090530101
→˓"

}
}

}
}

}
}

}
]
2023-03-15T18:29:25.142253 [RRC] [D] ue=0 "RRC Setup Procedure" finished␣
→˓successfully
2023-03-15T18:29:25.142263 [NGAP] [I] ue=0 Sending InitialUeMessage (ran_
→˓ue_id=0)

9.2 PCAPs

The srsRAN Project gNB can output PCAPs at the following layers:

• MAC

• NGAP

• GTP-U

• E1AP

• F1AP

• E2AP

To output these PCAPs, they must first be enabled on a per-layer basis in the gNB configuration file. See
the Configuration Reference for more details.

9.2. PCAPs 17

srsRAN Project Documentation

9.2.1 MAC

To analyze a MAC-layer PCAP using Wireshark, you will need to configure User DLT 149 for UDP and
enable the mac_nr_udp protocol:

1. Go to Edit->Preferences->Protocols->DLT_USER->Edit and add an entry with DLT=149 and Pay-
load protocol=udp.

2. Go to Analyze->Enabled Protocols->MAC-NR and enable mac_nr_udp

3. Go to Edit->Preferences->Protocols->MAC-NR: Enable both checkboxes “Attempt to. . . ”; Set
LCID->DRB mapping to “From configuration protocol”.

9.2.2 RLC

Note: To correctly view the RLC PCAPs you will need Wireshark v4.3.x or later.

To analyze a RLC-layer PCAP using Wireshark, you will need to configure User DLT 149 for UDP and
enable the rlc_nr_udp protocol:

1. Go to Edit->Preferences->Protocols->DLT_USER->Edit and add an entry with DLT=149 and Pay-
load protocol=udp.

2. Go to Analyze->Enabled Protocols->RLC-NR and enable rlc_nr_udp

3. Go to Edit->Preferences->Protocols->RLC-NR and configure according to your needs.

18 Chapter 9. Outputs

srsRAN Project Documentation

9.2.3 NGAP

To analyze an NGAP-layer PCAP using Wireshark, you will need to configure User DLT 152 for NGAP
and enable detection and decoding 5G-EA0 ciphered messages:

1. Go to Edit->Preferences->Protocols->DLT_USER->Edit and add an entry with DLT=152 and Pay-
load protocol=ngap.

2. Go to Edit->Preferences->Protocols->NAS-5GS and enable “Try to detect and decode 5G-EA0
ciphered messages”.

9.2. PCAPs 19

srsRAN Project Documentation

9.2.4 GTP-U

To analyze a GTP-U PCAP using Wireshark, you will need to configure User DLT 156 for GTP:

1. Go to Edit->Preferences->Protocols->DLT_USER->Edit and add an entry with DLT=156 and Pay-
load Protocol=gtp.

20 Chapter 9. Outputs

srsRAN Project Documentation

9.2.5 E1AP

To analyze an E1AP PCAP using Wireshark, you will need to configure User DLT 153 for E1AP:

1. Go to Edit->Preferences->Protocols->DLT_USER->Edit and add an entry with DLT=153 and Pay-
load Protocol=e1ap.

9.2. PCAPs 21

srsRAN Project Documentation

9.2.6 F1AP

To analyze an F1AP PCAP using Wireshark, you will need to configure User DLT 154 for F1AP:

1. Go to Edit->Preferences->Protocols->DLT_USER->Edit and add an entry with DLT=154 and Pay-
load Protocol=f1ap.

9.2.7 E2AP

To analyze an E2AP PCAP using Wireshark, you will need to configure User DLT 155 for E2AP:

1. Go to Edit->Preferences->Protocols->DLT_USER->Edit and add an entry with DLT=155 and Pay-
load Protocol=e2ap.

22 Chapter 9. Outputs

srsRAN Project Documentation

9.2. PCAPs 23

CHAPTER

TEN

CONFIGURATION REFERENCE

The srsRAN Project gNB application uses a YAML (.yml) configuration file.

The gNB comes with a number of example configuration files, these can be found in srsRAN_Project/
configs/ in the source code:

• B200 USRP @ 20 MHz in band 78 (TDD)

• N310 USRP @ 20 MHz in band 3 (FDD)

These configuration file examples provide a basic set-up to get users up and running, users can easily
modify these to suit their use-case.

More example configuration files for various use cases can be found here. These include sample supple-
mentary configuration files for:

• MIMO with a USRP

• Increasing QAM from 64 to 256

• Specific QOS configurations for voice, video, IMS, live-streaming and buffered video streaming

• Slicing support

These are intended to be used in conjunction with other configuration files, for example you might run
the MIMO example as follows:

sudo ./gnb -c gnb_rf_n310_fdd_n3_20mhz.yml -c mimo.yml

Furthermore you may wish to use QAM256 in addition to the above. This can be done as follows:

sudo ./gnb -c gnb_rf_n310_fdd_n3_20mhz.yml -c mimo.yml -c qam256.yml

10.1 Format

All configuration parameters are presented here below in the following format:

parameter

• Optional/Required TYPE (default). Description. Format: format description. Supported:
supported values.

24

https://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_rf_b200_tdd_n78_20mhz.yml
https://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_rf_n310_fdd_n3_20mhz.yml
https://github.com/srsran/srsRAN_Project/tree/main/configs

srsRAN Project Documentation

10.2 Configuration Parameters

gnb_id: 411 # Optional UINT (411). Sets the numerical␣
→˓ID associated with the gNB.

gnb_id_bit_length: # Optional UNIT. Sets the bit length of␣
→˓the gnb_id above. Format: integer between [22 - 32]

ran_node_name: srsgnb01 # Optional TEXT (srsgnb01). Sets the text␣
→˓ID associated with the gNB. Format: string without spaces.

cells: # Optional TEXT. Sets the cell␣
→˓configuration on a per cell basis, overwriting the default configuration␣
→˓defined by

cell_cfg. Contains a list of cells,␣
→˓each with parameters that overwrite the default config. This can only be

set via the configuration file. For␣
→˓more information see the relevant example configuration file:

gnb_custom_cell_properties.yml. Each␣
→˓list entry should begin with "-".

qos: # Optional TEXT. Configures RLC and PDCP␣
→˓radio bearers on a per 5QI basis. This can only be set via the␣
→˓configuration file. Each list entry should begin with "-".

srbs: # Optional TEXT. Configures signaling␣
→˓radio bearers. Each list entry should begin with "-".

slicing: # Optional TEXT. Configure network␣
→˓slicing options. This can only be set via the configuration file.
- # Configure Slice 1
sst: 1 # Optional UINT (1). Sets the␣

→˓Slice Service Type. Supported: [0 - 255].
sd: 0 # Optional UINT (0). Sets the␣

→˓Service Differentiator. Supported: [0-16777215].

amf:
addr: # Required TEXT. Sets the IP address␣

→˓or hostname of the AMF. Format: IPV4 or IPV6 IP address.
port: 38412 # Optional UINT (38412). Sets the AMF␣

→˓port. Format: integer between [20000 - 40000].
bind_addr: # Required TEXT. Sets the local IP␣

→˓address that the gNB binds to for receiving traffic from the AMF. Format:␣
→˓IPV4 or IPV6 IP address.
n2_bind_addr: # Optional TEXT. Sets local IP␣

→˓address to bind for N2 interface. Format: IPV4 or IPV6 IP address.
n3_bind_addr: # Optional TEXT. Sets local IP␣

→˓address to bind for N3 interface. Format: IPV4 or IPV6 IP address.
sctp_rto_initial: # Optional INT. Sets the initial␣

→˓retransmission timeout when creating the SCTP connection.
(continues on next page)

10.2. Configuration Parameters 25

srsRAN Project Documentation

(continued from previous page)

sctp_rto_min: # Optional INT. Sets the minimum␣
→˓retransmission timeout for the SCTP connection.
sctp_rto_max: # Optional INT. Sets the maximum␣

→˓retransmission timeout for the SCTP connection.
sctp_initial_max_attempts: # Optional INT. Sets the maximum␣

→˓retransmission attempts for the initial SCTP connection.
sctp_max_init_timeo: # Optional INT. Sets the maximum␣

→˓retransmission timeout for the initial SCTP connection.
udp_max_rx_msgs: # Optional INT. Sets the maximum␣

→˓amount of messages RX in a single syscall.
no_core: 0 # Optional BOOLEAN (0). Setting to␣

→˓true allows the gNB to run without a core. Supported: [0, 1].

e2:
enable_du_e2: 0 # Optional BOOLEAN (0). Enables the␣

→˓DU E2 agent. Supported: [0, 1].
addr: # Optional TEXT. Sets the RIC IP␣

→˓address.
port: 36421 # Optional UINT (36421). Sets the RIC␣

→˓Port. Supported: [20000 - 40000].
bind_addr: # Optional TEXT. Sets the local IP␣

→˓address to bind for RIC connection. Supported: IPv4 address.
sctp_rto_initial: # Optional INT. Sets the initial␣

→˓retransmission timeout when creating the SCTP connection.
sctp_rto_min: # Optional INT. Sets the minimum␣

→˓retransmission timeout for the SCTP connection.
sctp_rto_max: # Optional INT. Sets the maximum␣

→˓retransmission timeout for the SCTP connection.
sctp_initial_max_attempts: # Optional INT. Sets the maximum␣

→˓retransmission attempts for the initial SCTP connection.
sctp_max_init_timeo: # Optional INT. Sets the maximum␣

→˓retransmission timeout for the initial SCTP connection.
e2sm_kpm_enabled: 0 # Optional BOOLEAN (0). Enabled the␣

→˓E2SM KPM service module. Supported: [0, 1].
e2sm_rc_enabled: 0 # Optional BOOLEAN (0). Enabled the␣

→˓E2SM RC service module. Supported: [0, 1].

cu_cp:
max_nof_dus: # Optional UINT. Maximum number of DU␣

→˓connections that the CU-CP may accept.
max_nof_cu_ups: # Optional UINT. Maximum number of CU-

→˓UP connections that the CU-CP may accept.
inactivity_timer: 7200 # Optional INT (7200). Sets the UE/

→˓PDU Session/DRB inactivity timer in seconds. Supported: [1 - 7200].
ue_context_setup_timeout_s: 3 # Optional INT (3). Sets the timeout␣

→˓for the reception of an InitialContextSetupRequest after an␣
→˓InitialUeMessage was sent to the core, in seconds. If the value is reached,␣
→˓the UE will be released.

(continues on next page)

26 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

mobility:
trigger_handover_from_measurements: 0 # Optional BOOLEAN (0). Sets␣

→˓whether or not to start HO if neighbor cells become stronger. Supported: [0,
→˓ 1].
cells: # Optional TEXT. Sets the list␣

→˓of cells known to the CU-CP, their configs (if not provided over F1) and␣
→˓their respective neighbor cells.

- # Define Cell 1
nr_cell_id: # Required UINT. The ID of␣

→˓this serving cell.
periodic_report_cfg_id: # Optional UINT. The␣

→˓periodical report configuration to use for this serving cell.
ncells: # Required TEXT. List of␣

→˓neighbor cells.
nr_cell_id: # Required UINT. The ID␣

→˓of this neighbor cell.
report_configs: # Required TEXT. List␣

→˓of report configurations to use for measurements of this neighbor cell.
gnb_id: # Optional UINT. The ID of␣

→˓this gNB.
ssb_arfcn: # Optional UINT. The SSB␣

→˓ARFCN of this serving cell. Must be present if not provided over F1.
band: # Optional UINT. The NR␣

→˓band of this serving cell cell. Must be present if not provided over F1.
ssb_scs: # Optional UINT. The SSB␣

→˓subcarrier spacing of this serving cell in KHz. Must be present if not␣
→˓provided over F1.

ssb_period: # Optional UINT. The SSB␣
→˓period of this serving cell in ms. Must be present if not provided over F1.
→˓

ssb_offset: # Optional UINT. The SSB␣
→˓offset of this serving cell. Must be present if not provided over F1.

ssb_duration: # Optional UINT. The SSB␣
→˓duration of this serving cell in subframes. Must be present if not provided␣
→˓over F1.
report_configs: # Optional TEXT. Sets the list␣

→˓of report configurations to dynamically build a measurement configuration␣
→˓sent to the UEs using the below values.

- # Define report configs for␣
→˓cell 1

report_cfg_id: # Required UINT. The ID of␣
→˓this report configuration.

report_type: # Required TEXT. The type␣
→˓of the report. Supported: [event_triggered, periodical]. Note that␣
→˓periodical reports are only supported for serving cells.

report_interval_ms: 1024 # Optional UINT (1024). The␣
→˓report interval in ms.

a3_report_type: # Optional TEXT. A3 report␣
→˓type. Supported: [rsrp, rsrq, sinr].

(continues on next page)

10.2. Configuration Parameters 27

srsRAN Project Documentation

(continued from previous page)

a3_offset_db: # Optional UINT. A3 offset␣
→˓in dB used for measurement report trigger.

a3_hysteresis_db: # Optional UINT. A3␣
→˓hysteresis in dB used for measurement report trigger.

a3_time_to_trigger_ms: # Optional UINT. Time in ms␣
→˓during which A3 condition must be met before measurement report trigger.

rrc:
force_reestablishment_fallback: 0 # Optional BOOLEAN (0). Force␣

→˓RRC re-establishment fallback to RRC setup. Supported: [0, 1].
rrc_procedure_timeout_ms: 720 # Optional UINT (720). Sets the␣

→˓timeout in ms used for RRC message exchange with UE. It needs to suit the␣
→˓expected communication delay and account for potential retransmissions UE␣
→˓processing delays, SR delays, etc. Supported: [0 - inf].

security:
integrity: not_needed # Optional TEXT (not_needed).␣

→˓Sets the default integrity protection indication for DRBs.
confidentiality: required # Optional TEXT (required). Sets␣

→˓the default integrity confidentiality indication for DRBs.
nea_pref_list: nea0,nea2,nea1 # Optional TEXT (nea0,nea2,nea1).

→˓ Ordered preference list for the selection of encryption algorithm (NEA).␣
→˓Supported: [nea0,nea2,nea1,nea3].
nia_pref_list: nia2,nia1 # Optional TEXT (nia2,nia1).␣

→˓Ordered preference list for the selection of encryption algorithm (NIA).␣
→˓Supported: [nia2,nia1,nia3].

cu_up:
gtpu_queue_size: 2048 # Optional INT (2048). Sets the GTP-U␣

→˓queue size, in PDUs.
gtpu_reordering_timer: 0 # Optional INT (0). Sets the GTP-U RX␣

→˓reordering timer (in milliseconds).
warn_on_drop: 0 # Optional BOOLEAN (0). Enables the␣

→˓option to log a warning for dropped packets in GTP-U and PDCP due to full␣
→˓queues. Supported: [0, 1].

ntn:
cell_specific_koffset: 0 # Optional INT (0). Sets the cell-

→˓specific k-offset to be used for NTN. Supported: [0 - 1023].
ta_common: # Optional UINT. Sets the TA common␣

→˓offset.

ephemeris_info_ecef:
pos_x: 0 # Optional INT (0). Sets the X␣

→˓position of the satellite. Supported: [-67108864 - 67108863].
pos_y: 0 # Optional INT (0). Sets the Y␣

→˓position of the satellite. Supported: [-67108864 - 67108863].
pos_z: 0 # Optional INT (0). Sets the Z␣

→˓position of the satellite. Supported: [-67108864 - 67108863].

(continues on next page)

28 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

vel_x: 0 # Optional INT (0). Sets the X␣
→˓velocity of the satellite. Supported: [-32768 - 32767].
vel_y: 0 # Optional INT (0). Sets the Y␣

→˓velocity of the satellite. Supported: [-32768 - 32767].
vel_z: 0 # Optional INT (0). Sets the Z␣

→˓velocity of the satellite. Supported: [-32768 - 32767].
ephemeris_orbital:
semi_major_axis: 0 # Optional FLOAT (0). Sets the semi-

→˓major axis of the satellite. Supported: [0 - 1000000000].
eccentricity: 0 # Optional FLOAT (0). Sets the␣

→˓eccentricity of the satellite.
periapsis: 0 # Optional FLOAT (0). Sets the␣

→˓periapsis of the satellite.
longitude: 0 # Optional FLOAT (0). Sets the␣

→˓longitude of the satellites angle of ascending node.
inclination: 0 # Optional FLOAT (0). Sets the␣

→˓inclination of the satellite.
mean_anomaly: 0 # Optional FLOAT (0). Sets the mean␣

→˓anomaly of the satellite.

ru_ofh:
Many of the following values are optional as they have default values. In␣
→˓practice, all of the following parameters should be defined by the user, as␣
→˓they will need
to be configured specifically for the RU being used. Failing to configure␣
→˓this parameters correctly may result in the RU failing to connect correctly␣
→˓to the DU.
gps_alpha: 0 # Optional FLOAT (0). Sets the GPS␣

→˓alpha. Supported: [0 - 1.2288e+07].
gps_beta: 0 # Optional INT (0). Sets the GPS beta.

→˓ Supported: [-32768 - +32767].
ru_bandwidth_MHz: 0 # Required UINT (0). Sets the channel␣

→˓bandwidth in MHz. Supported: [5,10,15,20,25,30,40,50,60,70,80,90,100].
t1a_max_cp_dl: 500 # Optional INT (500). Sets T1a␣

→˓maximum value for downlink control-plane. Supported: [0 - 1960].
t1a_min_cp_dl: 258 # Optional INT (258). Sets T1a␣

→˓minimum value for downlink control-plane. Supported: [0 - 1960].
t1a_max_cp_ul: 500 # Optional INT (500). Sets T1a␣

→˓maximum value for uplink control-plane. Supported: [0 - 1960].
t1a_min_cp_ul: 258 # Optional INT (258). Sets T1a␣

→˓minimum value for uplink control-plane. Supported: [0 - 1960].
t1a_max_up: 300 # Optional INT (300).Sets T1a maximum␣

→˓value for uer-plane. Supported: [0 - 1960].
t1a_min_up: 85 # Optional INT (85). Sets T1a minimum␣

→˓value for user-plane. Supported: [0 - 1960].
ta4_max: 300 # Optional UINT (300). Sets the Ta4␣

→˓maximum value for User-Plane. Supported: [0 - 1960].
ta4_min: 85 # Optional UINT (85). Sets the Ta4␣

→˓maximum value for User-Plane. Supported: [0 - 1960].

(continues on next page)

10.2. Configuration Parameters 29

srsRAN Project Documentation

(continued from previous page)

is_prach_cp_enabled: 0 # Optional BOOLEAN (0). Sets PRACH␣
→˓control-plane enabled flag. Supported: [0, 1].
is_dl_broadcast_enabled: 0 # Optional BOOLEAN (0). Sets downlink␣

→˓broadcast enabled flag. Supported: [0, 1].
ignore_ecpri_seq_id: 0 # Optional BOOLEAN (0). Sets whether␣

→˓or not to ignore eCPRI sequence ID field value. Supported [0, 1].
ignore_ecpri_payload_size: 0 # Optional BOOLEAN (0). Sets whether␣

→˓or not to ignore eCPRI payload size field value. Supported [0, 1].
warn_unreceived_ru_frames: 1 # Optional BOOLEAN (1). Sets whether␣

→˓or not to send a warning when there are unreceived Radio Unit frames.␣
→˓Supported [0, 1].
compr_method_ul: bfp # Optional TEXT (bfp). Sets the␣

→˓uplink compression method. Supported: [none, bfp, bfp selective, block␣
→˓scaling, mu law, modulation, modulation selective].
compr_bitwidth_ul: 9 # Optional UINT (9). Sets the uplink␣

→˓compression bit width. Supported: [1 - 16].
compr_method_dl: bfp # Optional TEXT (bfp). Sets the␣

→˓downlink compression method. Supported: [none, bfp, bfp selective, block␣
→˓scaling, mu law, modulation, modulation selective].
compr_bitwidth_dl: 9 # Optional UINT (9). Sets the␣

→˓downlink compression bit width. Supported: [1 - 16].
compr_method_prach: none # Optional TEXT (none). Sets the␣

→˓PRACH compression method. Supported: [none, bfp, bfp selective, block␣
→˓scaling, mu law, modulation, modulation selective].
compr_bitwidth_prach: 16 # Optional UINT (16). Sets the PRACH␣

→˓compression bit width. Supported [1 - 16].
enable_ul_static_compr_hdr: 1 # Optional BOOLEAN (1). Uplink static␣

→˓compression header enabled flag. Supported: [0 . 1].
enable_dl_static_compr_hdr: 1 # Optional BOOLEAN (1). Downlink␣

→˓static compression header enabled flag. Supported: [0 . 1].
iq_scaling: 0.35 # Optional FLOAT (0.35). Sets the IQ␣

→˓scaling factor. Supported: [0 - 1].
cells: # Optional TEXT. Sets the hardware␣

→˓specific cell configuration on a per cell basis.
- # Cell 1
network_interface: enp1s0f0 # Optional TEXT (enp1s0f0).␣

→˓Sets the ethernet network interface name for the RU or PCIe identifier when␣
→˓using DPDK. Format: a string, e.g. [interface_name].

ru_mac_address: 70:b3:d5:e1:5b:06 # Optional TEXT␣
→˓(70:b3:d5:e1:5b:06). Sets the RU MAC address. Format: a string, e.g.␣
→˓[AA:BB:CC:DD:11:22:33].

du_mac_address: 00:11:22:33:00:77 # Optional TEXT␣
→˓(00:11:22:33:00:77). Sets the DU MAC address. Format: a string, e.g.␣
→˓[AA:BB:CC:DD:11:22:33].

vlan_tag: 1 # Optional UINT (1). Sets the V-
→˓LAN tag control information field. Supported: [1 - 4094].

ru_prach_port_id: [4] # Optional UINT (4). Sets the␣
→˓RU PRACH eAxC port ID. Supported: [0 - 65535].

ru_dl_port_id: [0, 1] # Optional UINT (0, 1). Sets␣

(continues on next page)

30 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

→˓the RU downlink eAxC port ID. Format: vector containing all DL eXaC ports,␣
→˓e.g. [0, ...\ , N].

ru_ul_port_id: [0] # Optional UINT (0). Sets the␣
→˓RU uplink eAxC port ID. Supported: [0 - 65535].

ru_sdr:
srate: 61.44 # Required FLOAT (61.44). Sets the␣

→˓sampling rate of the RF-frontend in MHz.
device_driver: uhd # Required TEXT (uhd). RF device␣

→˓driver name. Supported: [uhd, zmq].
device_args: # Optional TEXT. An argument that␣

→˓gets passed to the selected RF driver.
tx_gain: 50 # Required FLOAT (50). Sets the␣

→˓transmit gain in dB. Supported: [0 - max value supported by radio].
rx_gain: 60 # Required FLOAT (60). Sets the␣

→˓receive gain in dB. Supported: [0 - max value supported by radio].
freq_offset: 0 # Optional FLOAT (0). Sets the␣

→˓frequency offset in Hertz.
clock_ppm: 0 # Optional FLOAT (0). Sets the clock␣

→˓calibration in Parts Per Million (PPM).
lo_offset: 0 # Optional FLOAT (0). Shifts the␣

→˓local oscillator frequency in MHz away from the center frequency to move LO␣
→˓leakage out of the channel.
clock: default # Optional TEXT (default). Specify␣

→˓the RF device source for timestamping. Supported: [default, internal,␣
→˓external, gpsdo].
sync: default # Optional TEXT (default). Specify␣

→˓the RF device oscillator reference synchronization source. Supported:␣
→˓[default, internal, external, gpsdo].
otw_format: default # Optional TEXT (default). Specific␣

→˓the over-the-wire format. Supported: [default, sc8, sc12, sc16].
time_alignment_calibration: auto # Optional TEXT (auto). Compensates␣

→˓for any reception and transmission time misalignment inherent to the RF␣
→˓device. Positive values reduce the RF transmission delay with respect to␣
→˓the RF reception. Negative values have the opposite effect.

amplitude control:
tx_gain_backoff: 12.0 # Optional FLOAT (12.0). Sets␣

→˓baseband gain back-off in dB. This accounts for the signal PAPR and is␣
→˓applied regardless of clipping settings. Format: positive float.
enable_clipping: false # Optional BOOL (false). Sets␣

→˓clipping of the baseband samples on or off. If enabled, samples that exceed␣
→˓the power ceiling are clipped.
ceiling: -0.1 # Optional FLOAT (-0.1). Sets␣

→˓the power ceiling in dB, relative to the full scale amplitude of the radio.␣
→˓Format: negative float or 0.

expert_cfg:
low_phy_dl_throttling: 0 # Optional FLOAT (0). Throttles␣

(continues on next page)

10.2. Configuration Parameters 31

srsRAN Project Documentation

(continued from previous page)

→˓the lower PHY DL baseband generation. Setting to 0 disables throttling.␣
→˓Supported: any value in the range [0 - 1].
discontinuous_tx: 0 # Optional Boolean (0). Enables␣

→˓discontinuous transmission mode for the radio front-ends supporting it.␣
→˓Supported: [0, 1].
power_ramping_time_us: 0 # Optional FLOAT (0). Specifies␣

→˓the power ramping time in microseconds, it proactively initiates the␣
→˓transmission and mitigates transient effects. It is recommended to␣
→˓configure this parameter carefully, taking into account the characteristics␣
→˓of the transmit chain in order to achieve optimal performance

ru_dummy:
dl_processing_delay: 1 # Optional UINT (1). Sets the␣

→˓downlink processing delay in number of slots.

cell_cfg:
pci: 1 # Required UINT (1). Sets the␣

→˓Physical Cell ID. Supported: [0-1007].
dl_arfcn: 536020 # Required UINT (536020). Sets the␣

→˓Downlink ARFCN.
band: auto # Optional TEXT (auto). Sets the NR␣

→˓band being used for the cell. If not specified, will be set automatically␣
→˓based on ARFCN. Supported: all release 17 bands.
common_scs: 15 # Required UINT (15). Sets the␣

→˓subcarrier spacing in KHz to be used by the cell. Supported: [15, 30].
channel_bandwidth_MHz: 20 # Required UINT (20). Sets the␣

→˓channel Bandwidth in MHz, the number of PRBs will be derived from this.␣
→˓Supported: [5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100].
nof_antennas_dl: 1 # Optional UINT (1). Sets the number␣

→˓of antennas for downlink transmission. Supported: [1, 2, 4].
nof_antennas_ul: 1 # Optional UINT (1). Sets the number␣

→˓of antennas for uplink transmission. Supported: [1, 2, 4].
plmn: 00101 # Required TEXT (00101). Sets the␣

→˓Public Land Mobile Network code. Format: 7-digit PLMN code containing MCC &␣
→˓MNC.
tac: 7 # Required UINT (7). Sets the␣

→˓Tracking Area Code.
q_rx_lev_min: -70 # Optional INT (-70). Sets the␣

→˓required minimum received RSRP level for cell selection/re-selection, in␣
→˓dBm. Supported: [-70 - -22].
q_qual_min: -20 # Optional INT (-20). Sets the␣

→˓required minimum received RSRQ level for cell selection/re-selection, in dB.
→˓ Supported: [-43 - -12].
pcg_p_nr_fr1: 10 # Optional INT (10). Sets the maximum␣

→˓total TX power to be used by the UE in this NR cell group across in FR1.␣
→˓Supported: [-30 - +23].

mac_cell_group:
bsr_cfg: # Buffer status report␣

(continues on next page)

32 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

→˓configuration parameters
periodic_bsr_timer: 10 # Optional UINT (10). Sets␣

→˓the periodic Buffer Status Report Timer value in nof. subframes. Value 0␣
→˓equates to infinity. Supported: [1, 5, 10, 16, 20, 32, 40, 64, 80, 128, 160,
→˓ 320, 640, 1280, 2560, 0].

retx_bsr_timer: 80 # Optional UINT (80). sets␣
→˓the retransmission Buffer Status Report Timer value in nof. subframes.␣
→˓Supported: [10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240].

lc_sr_delay_timer: # Optional TEXT. Sets the␣
→˓logical Channel SR delay timer in nof. subframes. Supported: [10, 20, 40,␣
→˓80, 160, 320, 640, 1280, 2560, 5120, 10240].
phr_cfg: # Power Headroom report␣

→˓configuration parameters
phr_prohibit_timer: 10 # Optional UINT (10). Sets␣

→˓the PHR prohibit timer in nof. subframes. Supported: [0, 10, 20, 50, 100,␣
→˓200, 500, 1000].
sr_cfg: # Scheduling Request␣

→˓configuration parameters
sr_trans_max: 64 # Optional UINT (64). Sets␣

→˓the maximum number of SR transmissions. Supported: [4, 8, 16, 32, 64].
sr_prohibit_timer: # Optional TEXT. Sets the␣

→˓timer for SR transmission on PUCCH in ms. Supported: [1, 2, 4, 8, 16, 32,␣
→˓64].

ssb:
ssb_period: 10 # Optional UINT (10). Sets the␣

→˓period of SSB scheduling in milliseconds. Supported: [5, 10, 20].
ssb_block_power_dbm: -16 # Optional INT (-16). Sets the SS␣

→˓PBCH block power in dBm. Supported: [-60 - +50].
pss_to_sss_epre_db: 0 # Optional UINT (0). Sets the␣

→˓Synchronization Signal Block Primary Synchronization Signal to Secondary␣
→˓Synchronization Signal Energy Per Resource Element ratio in dB. Supported:␣
→˓[0, 3].

sib:
si_window_length: 160 # Optional UINT (160). Sets the␣

→˓length of the SI scheduling window, in slots. It must be always shorter or␣
→˓equal to the period of the SI message. Supported: [5,10,20,40,80,160,320,
→˓640,1280].
si_sched_info: # Optional TEXT. Configures the␣

→˓scheduling for each of the SI-messages broadcast by the gNB.
t300: 1000 # Optional UINT (1000). Sets the␣

→˓RRC Connection Establishment timer in ms. The timer starts upon␣
→˓transmission of RRCSetupRequest. Supported: [100,200,300,400,600,1000,1500,
→˓2000].
t301: 1000 # Optional UINT (1000). Sets the␣

→˓RRC Connection Re-establishment timer in ms. The timer starts upon␣
→˓transmission of RRCReestablishmentRequest. Supported: [100,200,300,400,600,
→˓1000,1500,2000].

(continues on next page)

10.2. Configuration Parameters 33

srsRAN Project Documentation

(continued from previous page)

t310: 1000 # Optional UINT (1000). Sets the␣
→˓Out-of-sync timer in ms. The timer starts upon detecting physical layer␣
→˓problems for the SpCell i.e. upon receiving N310 consecutive out-of-sync␣
→˓indications from lower layers. Supported: [0,50,100,200,500,1000,2000].
n310: 1 # Optional UINT (1). Sets the Out-

→˓of-sync counter. The counter is increased upon reception of "out-of-sync"␣
→˓from lower layer while the timer T310 is stopped. Starts the timer T310,␣
→˓when configured value is reached. Supported: [1,2,3,4,6,8,10,20].
t311: 3000 # Optional UINT (3000). Sets the␣

→˓RRC Connection Re-establishment procedure timer in ms. The timer starts␣
→˓upon initiating the RRC connection re-establishment procedure. Supported:␣
→˓[1000,3000,5000,10000,15000,20000,30000].
n311: 1 # Optional UINT (1). Sets the In-

→˓sync counter. The counter is increased upon reception of the "in-sync" from␣
→˓lower layer while the timer T310 is running. Stops the timer T310, when␣
→˓configured value is reached.Supported: [1,2,3,4,5,6,8,10].
t319: 1000 # Optional UINT (1000). Sets the␣

→˓RRC Connection Resume timer in ms. The timer starts upon transmission of␣
→˓RRCResumeRequest or RRCResumeRequest1. Supported: [100,200,300,400,600,1000,
→˓1500,2000].

ul_common:
p_max: # Optional TEXT. Sets maximum␣

→˓transmit power allowed in this serving cell. Supported: [-30 - +23].
max_pucchs_per_slot: 31 # Optional INT (31). Sets the␣

→˓maximum number of PUCCH grants that can be allocated per slot. Supported:␣
→˓[1 - 64].
max_ul_grants_per_slot: 32 # Optional INT (32). Sets the␣

→˓maximum number of UL grants that can be allocated per slot. Supported: [1 -␣
→˓80].

pdcch:
common:
coreset0_index: # Optional INT. Sets the␣

→˓CORESET 0 index. Supported: [0 - 15].
ss1_n_candidates: {0, 0, 1, 0, 0} # Optional UINT ({0, 0, 1, 0,␣

→˓0}). Sets the number of PDCCH candidates per aggregation level for␣
→˓SearchSpace#1. Supported: any 5 value array containing the following UINT␣
→˓values [0, 1, 2, 3, 4, 5, 6, 7, 8].

ss0_index: 0 # Optional UINT (0). Sets the␣
→˓SearchSpace#0 index. Supported: [0 - 15].

max_coreset0_duration: # Optional INT. Sets the␣
→˓maximum CORESET#0 duration in OFDM symbols to consider when deriving CORESET
→˓#0 index. Supported: [1 - 2].
dedicated:
coreset1_rb_start: 1 # Optional INT (0). Sets the␣

→˓starting common resource block (CRB) number for CORESET 1, relative to CRB0.
→˓ Supported: [0 - 275].

coreset1_l_crb: # Optional INT (Across entire␣

(continues on next page)

34 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

→˓BW of cell). Sets the length of CORESET 1 in number of CRBs. Supported: [0 -
→˓ 275].

coreset1_duration: # Optional INT (Max(2, Nof.␣
→˓CORESET#0 symbols)). Sets the duration of CORESET 1 in number of OFDM␣
→˓symbols. Supported: [1 - 2].

ss2_n_candidates: {0, 0, 0, 0, 0} # Optional UINT ({0, 0, 0, 0,␣
→˓0}). Sets the number of PDCCH candidates per aggregation level for␣
→˓SearchSpace#2. Supported: any 5 value array containing the following UINT␣
→˓values [0, 1, 2, 3, 4, 5, 6, 7, 8].

dci_format_0_1_and_1_1: 1 # Optional BOOLEAN (1). Sets␣
→˓whether to use non-fallback or fallback DCI format in UE SearchSpace#2.␣
→˓Supported: [0, 1].

ss2_type: ue_dedicated # Optional TEXT (ue_
→˓dedicated). Sets the SearchSpace type for UE dedicated SearchSpace#2.␣
→˓Supported: [common, ue_dedicated].

pdsch:
min_ue_mcs: 0 # Optional UINT (0). Sets a␣

→˓minimum PDSCH MCS value to be used for all UEs. Supported: [0 - 28].
max_ue_mcs: 28 # Optional UINT (28). Sets a␣

→˓maximum PDSCH MCS value to be used for all UEs. Supported: [0 - 28].
fixed_rar_mcs: 0 # Optional UINT (0). Sets a fixed␣

→˓RAR MCS value for all UEs. Supported: [0 - 28].
fixed_sib1_mcs: 5 # Optional UINT (5). Sets a fixed␣

→˓SIB1 MCS for all UEs. Supported: [0 - 28].
nof_harqs: 16 # Optional UNIT (16). Sets the␣

→˓number of Downlink HARQ processes. Supported [2, 4, 6, 8, 10, 12, 16].
max_nof_harq_retxs: 4 # Optional UINT (4). Sets the␣

→˓maximum number times a DL HARQ can be retransmitted before it is discarded.␣
→˓Supported: [0 - 4].
max_consecutive_kos: 100 # Optional UINT (100). Sets the␣

→˓maximum number of consecutive HARQ-ACK KOs before an RLF is reported.␣
→˓Supported: [0 - inf].
rv_sequence: [0,2,3,1] # Optional UINT (0,2,3,1). Sets␣

→˓the redundancy version sequence to use for PDSCH. Supported: any␣
→˓combination of [0, 1, 2, 3].
mcs_table: qam64 # Optional TEXT (qam64). Sets the␣

→˓MCS table to use for PDSCH. Supported: [qam64, qam256].
min_rb_size: 1 # Optional UINT (1). Sets the␣

→˓minimum RB size for the UE PDSCH resource allocation. Supported: [1 - 275].
max_rb_size: 275 # Optional UINT (275). Sets the␣

→˓maximum RB size for the UE PDSCH resource allocation. Supported: [1 - 275].
max_pdschs_per_slot: 35 # Optional UINT (35). Sets the␣

→˓maximum number of PDSCH grants per slot, including SIB, RAR, Paging and UE␣
→˓data grants. Supported: [1 - 35].
max_alloc_attempts: 35 # Optional UINT (35). Sets the␣

→˓maximum number of DL or UL PDCCH grant allocation attempts per slot before␣
→˓scheduler skips the slot. Supported: [1 - 35].
olla_cqi_inc_step: 0.001 # Optional FLOAT (0.001). Sets␣

(continues on next page)

10.2. Configuration Parameters 35

srsRAN Project Documentation

(continued from previous page)

→˓the outer-loop link adaptation (OLLA) increment value. The value 0 means␣
→˓that OLLA is disabled. Supported: [0 - 1].
olla_target_bler: 0.01 # Optional FLOAT (0.01). Sets the␣

→˓target DL BLER set in Outer-loop link adaptation (OLLA) algorithm.␣
→˓Supported: [0 - 0.5].
olla_max_cqi_offset: 4 # Optional FLOAT (4). Sets the␣

→˓maximum offset that the Outer-loop link adaptation (OLLA) can apply to CQI.␣
→˓Supported: positive float.
dc_offset: # Optional TEXT. Sets the direct␣

→˓Current (DC) Offset in number of subcarriers, using the common SCS as␣
→˓reference for carrier spacing, and the center of the gNB DL carrier as DC␣
→˓offset value 0. The user can additionally

set "outside" to define that␣
→˓the DC offset falls outside the DL carrier or "undetermined" in the case␣
→˓the DC offset is unknown. Supported: [-1650 - 1649] OR [outside,
→˓undetermined,center].
harq_la_cqi_drop_threshold: # Optional UINT. Sets the link␣

→˓Adaptation (LA) threshold for drop in CQI of the first HARQ transmission␣
→˓above which HARQ retransmissions are cancelled. Set this value to 0 to␣
→˓disable this feature. Supported: [0 - 15].
harq_la_ri_drop_threshold: # Optional UINT. Sets the link␣

→˓Adaptation (LA) threshold for drop in nof. layers of the first HARQ␣
→˓transmission above which HARQ retransmission is cancelled. Set this value␣
→˓to 0 to disable this feature. Supported: [0 - 4].
dmrs_additional_position: # Optional UINT. Sets the PDSCH␣

→˓DMRS additional position. Supported: [0 - 3].

pusch:
min_ue_mcs: 0 # Optional UINT (0). Sets a␣

→˓minimum PUSCH MCS value to be used for all UEs. Supported: [0 - 28].
max_ue_mcs: 28 # Optional UINT (28). Sets a␣

→˓maximum PUSCH MCS value to be used for all UEs. Supported: [0 - 28].
max_consecutive_kos: 100 # Optional UINT (100). Sets the␣

→˓maximum number of consecutive CRC KOs before an RLF is reported. Supported:␣
→˓[0 - inf].
rv_sequence: [0] # Optional UINT (0). Sets the␣

→˓redundancy version sequence to use for PUSCH. Supported: any combination of␣
→˓[0, 1, 2, 3].
mcs_table: qam64 # Optional TEXT (qam64). Sets the␣

→˓MCS table to use for PUSCH. Supported: [qam64, qam256].
msg3_delta_preamble: 6 # Optional INT (6). Sets the MSG3␣

→˓DeltaPreamble power offset between MS3 and RACH preamble transmission.␣
→˓Supported: [-1 - 6].
p0_nominal_with_grant: -76 # Optional INT (-76). Sets the P0␣

→˓value for PUSCH grant (except MSG3), in dBm. Supported: multiples of 2␣
→˓within the range [-202, 24].
msg3_delta_power: 8 # Optional INT (8). Sets the␣

→˓target power level at the network receiver side, in dBm. Supported:␣
→˓multiples of 2 within the range [-6, 8].

(continues on next page)

36 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

max_puschs_per_slot: 16 # Optional UINT (16). Sets the␣
→˓maximum number of PUSCH grants per slot. Supprted: [1 - 16].
b_offset_ack_idx_1: 9 # Optional UINT (9). Sets the␣

→˓betaOffsetACK-Index1 part of UCI-OnPUSCH. Supported: [0 - 31].
b_offset_ack_idx_2: 9 # Optional UINT (9). Sets the␣

→˓betaOffsetACK-Index2 part of UCI-OnPUSCH. Supported: [0 - 31].
b_offset_ack_idx_3: 9 # Optional UINT (9). Sets the␣

→˓betaOffsetACK-Index3 part of UCI-OnPUSCH. Supported: [0 - 31].
beta_offset_csi_p1_idx_1: 9 # Optional UINT (9). Sets the b_

→˓offset_csi_p1_idx_1 part of UCI-OnPUSCH. Supported: [0 - 31].
beta_offset_csi_p1_idx_2: 9 # Optional UINT (9). Sets the b_

→˓offset_csi_p1_idx_2 part of UCI-OnPUSCH. Supported: [0 - 31].
beta_offset_csi_p2_idx_1: 9 # Optional UINT (9). Sets the b_

→˓offset_csi_p2_idx_1 part of UCI-OnPUSCH. Supported: [0 - 31].
beta_offset_csi_p2_idx_2: 9 # Optional UINT (9). Sets the b_

→˓offset_csi_p2_idx_2 part of UCI-OnPUSCH. Supported: [0 - 31].
min_k2: 4 # Optional UINT (4). Sets the␣

→˓minimum value of K2 (difference in slots between PDCCH and PUSCH).␣
→˓Supported: [1 - 4].
dc_offset: # Optional TEXT. Sets the direct␣

→˓Current (DC) Offset in number of subcarriers, using the common SCS as␣
→˓reference for carrier spacing, and the center of the gNB UL carrier as DC␣
→˓offset value 0. The user can additionally

set "outside" to define that␣
→˓the DC offset falls outside the DL carrier or "undetermined" in the case␣
→˓the DC offset is unknown. Supported: [-1650 - 1649] OR [outside,
→˓undetermined,center].
olla_snr_inc_step: 0.001 # Optional FLOAT (0.001). Sets␣

→˓the outer-loop link adaptation (OLLA) increment value. The value 0 means␣
→˓that OLLA is disabled. Supported: [0 - 1].
olla_target_bler: 0.01 # Optional FLOAT (0.01). Sets the␣

→˓target UL BLER set in Outer-loop link adaptation (OLLA) algorithm.␣
→˓sUPPORTED: [0 - 0.5].
olla_max_snr_offset: 5 # Optional FLOAT (5). Sets the␣

→˓maximum offset that the Outer-loop link adaptation (OLLA) can apply to␣
→˓estimate the UL SNR. Supported: positive float.
dmrs_additional_position: # Optional UINT. Sets the PUSCH␣

→˓DMRS additional position. Supported: [0 - 3].

pucch:
p0_nominal: -90 # Optional UINT (-90). Sets the␣

→˓power control parameter P0 for PUCCH transmissions in dBm. Supported:␣
→˓multiples of 2 and within the [-202, 24] interval.
sr_period_ms: 40 # Optional UINT (40). Sets the SR␣

→˓period in milliseconds. Supported: [1,2,4,8,10,16,20,40,80,160,320].
f1_nof_ue_res_harq: 3 # Optional UINT (3). Sets the␣

→˓number of PUCCH F1 resources available per UE for HARQ. Supported: [1 - 8].
f1_nof_cell_res_sr: 2 # Optional UINT (2). Sets the␣

→˓number of PUCCH F1 resources available per cell for SR. Supported: [1 - 10].

(continues on next page)

10.2. Configuration Parameters 37

srsRAN Project Documentation

(continued from previous page)

f1_nof_symbols: 14 # Optional UINT (14). Sets the␣
→˓number of symbols for PUCCH F1 resources. Supported: [4 - 14].
f1_enable_occ: 0 # Optional BOOLEAN (0). Enables␣

→˓OCC for PUCCH F1. Supported: [0, 1].
f1_nof_cyclic_shifts: 1 # Optional UINT (1). Sets the␣

→˓number of possible cyclic shifts available for PUCCH F1 resources.␣
→˓Supported: [1,2,3,4,6,12].
f1_intraslot_freq_hop: 0 # Optional BOOLEAN (0). Enables␣

→˓intra-slot frequency hopping for PUCCH F1. Supported: [0, 1].
nof_cell_harq_pucch_res_sets: 1 # Optional UINT (1). Sets the␣

→˓number of separate PUCCH resource sets for HARQ-ACK that are available in␣
→˓the cell. The higher the number of sets, the lower the chances UEs have to␣
→˓share the same PUCCH resources. Supported: [1 - 10].
f2_nof_ue_res_harq: 6 # Optional UINT (6). Sets the␣

→˓number of PUCCH F2 resources available per UE for HARQ. Supported: [1 - 8].
f2_nof_cell_res_csi: 1 # Optional UINT (1). Sets the␣

→˓number of PUCCH F2 resources available per cell for CSI. Supported: [1 -␣
→˓10].
f2_nof_symbols: 2 # Optional UINT (2). Sets the␣

→˓number of symbols for PUCCH F2 resources. Supported: [1 - 2].
f2_max_nof_rbs: 1 # Optional UINT (1). Sets the max␣

→˓number of RBs for PUCCH F2 resources. Supported: [1 - 16].
f2_max_payload: # Optional INT. Sets the max␣

→˓number of payload bits for PUCCH F2 resources. Supported [1 - 11].
f2_max_code_rate: dot35 # Optional TEXT (dot35). Sets the␣

→˓PUCCH F2 max code rate. Supported: [dot08, dot15, dot25, dot35, dot45,␣
→˓dot60, dot80].
f2_intraslot_freq_hop: 0 # Optional BOOLEAN (0). Enables␣

→˓intra-slot frequency hopping for PUCCH F2. Supported: [0, 1].
min_k1: 4 # Optional UINT (4). Sets the␣

→˓minimum value of K1 (difference in slots between PDSCH and HARQ-ACK). Lower␣
→˓k1 values will reduce latency, but place a stricter requirement on the UE␣
→˓decode latency. Supported: [1 - 4].
max_consecutive_kos: 100 # Optional UINT (100). Sets the␣

→˓maximum number of consecutive undecoded PUCCH F2 for CSI before an Radio␣
→˓Link Failure is reported.

prach:
prach_config_index: # Optional UINT. Sets the PRACH␣

→˓configuration index. If not set, the value is derived, so that the PRACH␣
→˓fits in an UL slot. Supported: [0 - 255].
prach_root_sequence_index: 1 # Optional UINT (1). Sets the␣

→˓PRACH Roost Sequence Index (RSI), which determines the Zadoff-Chu (ZC)␣
→˓sequence used. Supported: [0 - 837]. If the PRACH configuration index is␣
→˓larger than 86, you cannot set a PRACH RSI of more than 137.
zero_correlation_zone: 0 # Optional UINT (0). Sets the␣

→˓Zero Correlation Zone, which determines the size of the cyclic shift and␣
→˓the number of preamble sequences which can be generated from each Root␣
→˓Sequence Index. Supported: [0 - 15].

(continues on next page)

38 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

fixed_msg3_mcs: 0 # Optional UINT (0). Sets a fixed␣
→˓Msg3 MCS. Supported: [0 - 28].
max_msg3_harq_retx: 4 # Optional UINT (4). Sets the␣

→˓maximum number of Msg3 HARQ retransmissions. Supported: [0 - 4].
total_nof_ra_preambles: # Optional TEXT. Sets the number␣

→˓of different PRACH preambles. Supported: [1 - 64].
prach_frequency_start: # Optional INT. Set Offset of␣

→˓lowest PRACH transmission occasion in frequency domain respective to PRB 0,␣
→˓in PRBs. Supported: [0 - (MAX_NOF_PRB - 1)].
preamble_rx_target_pw: -100 # Optional INT (-100). Sets the␣

→˓Target power level at the network receiver side, in dBm. Supported:␣
→˓multiples of 2 within range [-202, -60].
preamble_trans_max: 7 # Optional UINT (7). Sets the max␣

→˓number of RA preamble transmissions performed before declaring a failure.␣
→˓Supported: [3, 4, 5, 6, 7, 8, 10, 20, 50, 100, 200].
power_ramping_step_db: 4 # Optional UINT (4). Sets the␣

→˓power ramping steps for PRACH. Supported: [0, 2, 4 , 6].
ports: # Optional UINT. Sets the list of␣

→˓atenna ports. Expected value is a UINT string of antenna port IDs.
nof_ssb_per_ro: 1 # Optional FLOAT (1). Sets the␣

→˓number of SSBs per RACH occasion. Supported: [1/8, 1/4, 1/2, 1, 2, 4, 8,␣
→˓16].
nof_cb_preambles_per_ssb: 4 # Optional UINT (4). Sets the␣

→˓number of contention based preambles per SSB. Supported: [1 - 64].

tdd_ul_dl_cfg:
dl_ul_tx_period: 10 # Optional INT (10). Sets the TDD␣

→˓pattern periodicity in slots. The combination of this value and the chosen␣
→˓numerology must lead to a TDD periodicity of 0.5, 0.625, 1, 1.25, 2, 2.5, 3,
→˓ 4, 5 or 10 milliseconds. Supported: [2 - 80].
nof_dl_slots: 6 # Optional INT (6). Number of␣

→˓consecutive full Downlink slots. Supported: [0-80].
nof_dl_symbols: 8 # Optional INT (8). Number of␣

→˓Downlink symbols at the beginning of the slot following full Downlink slots.
→˓ Supported: [0-13].
nof_ul_slots: 3 # Optional INT (3). Number of␣

→˓consecutive full Uplink slots. Supported: [0 - 80].
nof_ul_symbols: 0 # Optional INT (0). Number of␣

→˓Uplink symbols at the end of the slot preceding the first full Uplink slot.␣
→˓Supported: [0-13].
pattern2:
dl_ul_tx_period: 10 # Optional INT (10). Sets the␣

→˓TDD pattern periodicity in slots. The combination of this value and the␣
→˓chosen numerology must lead to a TDD periodicity of 0.5, 0.625, 1, 1.25, 2,␣
→˓2.5, 3, 4, 5 or 10 milliseconds. Supported: [2 - 80].

nof_dl_slots: 6 # Optional INT (6). Number of␣
→˓consecutive full Downlink slots. Supported: [0-80].

nof_dl_symbols: 8 # Optional INT (8). Number of␣
→˓Downlink symbols at the beginning of the slot following full Downlink slots.

(continues on next page)

10.2. Configuration Parameters 39

srsRAN Project Documentation

(continued from previous page)

→˓ Supported: [0-13]
nof_ul_slots: 3 # Optional INT (3). Number of␣

→˓consecutive full Uplink slots. Supported: [0 - 80].
nof_ul_symbols: 0 # Optional INT (0). Number of␣

→˓Uplink symbols at the end of the slot preceding the first full Uplink slot.␣
→˓Supported: [0-13].

paging:
pg_search_space_id: 1 # Optional UINT (1). Sets the␣

→˓SearchSpace to use for Paging. Supported: [0, 1].
default_pg_cycle_in_rf: 128 # Optional UINT (128). Sets the␣

→˓default Paging cycle in nof. Radio Frames. Supported: [32,64,128,256].
nof_pf_per_paging_cycle: oneT # Optional TEXT (oneT). Sets the␣

→˓number of paging frames per DRX cycle. Supported: [oneT, halfT, quarterT,␣
→˓oneEighthT, oneSixteethT].
pf_offset: 0 # Optional UINT (0). Sets the␣

→˓paging frame offset. Supported: [0 - (nof_pf_per_paging_cycle - 1)].
nof_po_per_pf: 1 # Optional UINT (1). Sets the␣

→˓number of paging occasions per paging frame. Supported: [1, 2, 4].

csi:
csi_rs_enabled: 1 # Optional BOOLEAN (1). Enables␣

→˓CSI-RS resources and CSI reporting. Supported: [0, 1].
csi_rs_period: 20 # Optional UINT (20). Sets the␣

→˓CSI-RS period in milliseconds. Supported: [10, 20, 40, 80].
meas_csi_rs_slot_offset: 2 # Optional UINT (2). Sets the␣

→˓slot offset of first CSI-RS resource used for measurement.
tracking_csi_rs_slot_offset: 12 # Optional UINT (12). Sets the␣

→˓slot offset of the first CSI-RS slot used for tracking.
zp_csi_rs_slot_offset: # Optional TEXT. Sets the slot␣

→˓offset of the ZP CSI-RS resources.
pwr_ctrl_offset: 0 # Optional INT (0). Sets the␣

→˓power offset of PDSCH RE to NZP CSI-RS RE in dB. Supported: [-8 - 15].

expert_phy:
max_proc_delay: 5 # Optional INT (5). Sets the␣

→˓maximum allowed DL processing delay in slots. Supported: [1 - 30].
pusch_dec_max_iterations: 6 # Optional UINT (6). Sets the␣

→˓number of PUSCH LDPC decoder iterations. Format: Positive integer greater␣
→˓than 0.
pusch_dec_enable_early_stop: 1 # Optional BOOL (1). Enables the␣

→˓PUSCH decoder early stopping mechanism.
pusch_sinr_calc_method: post_equalization # Optional TEXT (evm). Sets the␣

→˓PUSCH SINR calculation method. Supported: [channel_estimator, post_
→˓equalization, evm].
max_request_headroom_slots: 0 # Optional UINT (0). Sets the␣

→˓maximum request headroom size in slots. Supported: [0 - 3].

buffer_pool:

(continues on next page)

40 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

nof_segments: 1048576 # Optional UINT (1048576). Sets the␣
→˓number of segments allocated by the buffer pool.
segment_size: 2048 # Optional UINT (2048). Sets the size␣

→˓of each buffer pool segment in bytes.

test_mode:
test_ue:
rnti: 0 # Optional ENUM (0). Sets the C-

→˓RNTI of the UE. Supported: [0 - 65519].
nof_ues: 1 # Optonal UINT (1). Sets the number␣

→˓of test UE(s) created. Supported [0 - 1024].
auto_ack_indication_delay: # Optional TEXT. Sets the delay␣

→˓before the UL and DL HARQs are automatically ACKed. This feature should␣
→˓only be used if the UL PHY is not operational.
pdsch_active: 1 # Optional BOOLEAN (1). Enables the␣

→˓PDSCH of the UE.
pusch_active: 1 # Optional BOOLEAN (1). Enables the␣

→˓PUSCH of the UE.
cqi: 15 # Optional UINT (15). Sets the␣

→˓Channel Quality Information to be forwarded to the test UE. Supported: [1 -␣
→˓15].
pmi: 0 # Optional UINT (0). Sets the␣

→˓Precoder Matrix Indicator to be forwarded to test UE. Supported: [0 - 3].
ri: 1 # Optional UINT (1). Sets the Rank␣

→˓Indicator to be forwarded to the test UE. Supported: [1 - 4].
i_1_1: 0 # Optional INT (0). Sets the␣

→˓Precoder Matrix codebook index "i_1_1" to be forwarded to test UE, in the␣
→˓case of more than 2 antennas. Supported: [0 - 7].
i_1_3: 0 # Optional INT (0). Sets the␣

→˓Precoder Matrix codebook index "i_1_3" to be forwarded to test UE, in the␣
→˓case of more than 2 antennas. Supported: [0 - 1].
i_2: 0 # Optional INT (0). Sets the␣

→˓Precoder Matrix codebook index "i_2" to be forwarded to test UE, in the␣
→˓case of more than 2 antennas. Supported: [0 - 3].

expert_execution:
cell_affinities: # Optional TEXT. Sets the cell CPU␣

→˓affinities configuration on a per cell basis. Entry order is the same as␣
→˓the order in the defined cell list.

-
l1_dl_cpus: # Optional TEXT. Sets the CPU␣

→˓core(s) assigned to L1 downlink tasks. Supported: [1, 2, 3 , ..., N]. Where␣
→˓N is the number of total cores available.

l1_ul_cpus: # Optional TEXT. Sets the CPU␣
→˓core(s) assigned to L1 uplink tasks. Supported: [1, 2, 3 , ..., N].

l1_dl_pinning: # Optional TEXT. Sets the policy␣
→˓used for assigning CPU cores to L1 downlink tasks.

l1_ul_pinning: # Optional TEXT. Sets the policy␣
→˓used for assigning CPU cores to L1 uplink tasks.

(continues on next page)

10.2. Configuration Parameters 41

srsRAN Project Documentation

(continued from previous page)

l2_cell_cpus: # Optional TEXT. Sets the CPU␣
→˓core(s) assigned to L2 cells tasks. Supported: [1, 2, 3 , ..., N].

l2_cell_pinning: # Optional TEXT. Sets the policy␣
→˓used for assigning CPU cores to L2 cell tasks.

ru_cpus: # Optional TEXT. Sets the CPU␣
→˓core(s) used for the Radio Unit tasks. Supported: [1, 2, 3 , ..., N].

ru_pinning: # Optional TEXT. Sets the policy␣
→˓used for assigning CPU cores to Radio Unity tasks.
affinities:
low_priority_cpus: # Optional TEXT. Sets the CPU␣

→˓core(s) assigned to low priority tasks. Supported: [1, 2, 3 , ..., N].
low_priority_pinning: # Optional TEXT. Sets the policy␣

→˓used for assigning CPU cores to low priority tasks.
ioslated_cpus: # Optional TEXT. Sets the CPU␣

→˓core(s) isolated for the gNB application. Supported: [1, 2, 3 , ..., N].
threads:
non_rt:
nof_non_rt_threads: 4 # Optional UINT (4). Sets the␣

→˓number of non real time threads for processing of CP and UP data in upper␣
→˓layers.
upper_phy:
pdsch_processor_type: auto # Optional TEXT (auto). Sets␣

→˓the PDSCH processor type. Supported: [auto, generic, concurrent, lite].
nof_pusch_decoder_threads: 1 # Optional UINT (1). Sets the␣

→˓number of threads used to encode PUSCH.
nof_ul_threads: 1 # Optional UINT (1). Sets the␣

→˓number of upprt PHY threads to proccess uplink.
nof_dl_threads: 2 # Optional UINT (1). Sets the␣

→˓number of upprt PHY threads to proccess downlink.
lower_phy:
execution_profile: # Optional TEXT. Sets the lower␣

→˓physical layer executor profile. Supported: [single, dual, quad].
ofh:
enable_dl_parallelization: 1 # Optional BOOLEAN. Sets the␣

→˓Open Fronthaul downlink parallelization flag. Supported: [0, 1].

hal:
eal_args: # Optional TEXT. EAL configuration␣

→˓parameters used to initialize DPDK.

log:
All gNB layers and components can be configured independently to output at␣
→˓various levels of detail. Logs can be configured to the following levels␣
→˓(from lowest to highest levels of detail):
none, error, warning, info, debug
filename: # Optional TEXT (/tmp/gnb.log). File␣

→˓path for logs. Logs can be redirected to stdout by setting the filename to
→˓"stdout".
all_level: warning # Optional TEXT (warning). Sets a␣

(continues on next page)

42 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

→˓common log level across PHY, MAC, RLC, PDCP, RRC, SDAP, NGAP and GTPU␣
→˓layers.
phy_level: warning # Optional TEXT (warning). Sets PHY␣

→˓log level.
mac_level: warning # Optional TEXT (warning). Sets MAC␣

→˓log level.
rlc_level: warning # Optional TEXT (warning). Sets RLC␣

→˓log level.
pdcp_level: warning # Optional TEXT (warning). Sets PDCP␣

→˓log level.
rrc_level: warning # Optional TEXT (warning). Sets RRC␣

→˓log level.
sdap_level: warning # Optional TEXT (warning). Sets SDAP␣

→˓log level.
ngap_level: warning # Optional TEXT (warning). Sets NGAP␣

→˓log level.
gtpu_level: warning # Optional TEXT (warning). Sets GTPU␣

→˓log level.
radio_level: info # Optional TEXT (info). Sets radio␣

→˓log level.
fapi_level: warning # Optional TEXT (warning). Sets FAPI␣

→˓log level.
ofh_level: warning # Optional TEXT (warning). Sets Open␣

→˓Fronthaul log level.
f1ap_level: warning # Optional TEXT (warning). Sets F1AP␣

→˓log level.
f1u_level: warning # Optional TEXT (warning). Sets F1u␣

→˓log level.
du_level: warning # Optional TEXT (warning). Sets DU␣

→˓log level.
cu_level: warning # Optional TEXT (warning). Sets CU␣

→˓log level.
sec_level: warning # Optional TEXT (warning). Sets␣

→˓security functions level.
lib_level: warning # Optional TEXT (warning). Sets␣

→˓generic log level.
hex_max_size: 0 # Optional UINT (0). Sets maximum␣

→˓number of bytes to print for hex messages. Supported: [0 - 1024]
broadcast_enabled: 0 # Optional BOOL (0). Enables logging␣

→˓in the PHY and MAC layer of broadcast messages and all PRACH opportunities.␣
→˓Supported: [0, 1].
phy_rx_symbols_filename: # Optional TEXT. Print received␣

→˓symbols to file. Symbols will be printed if a valid path is set. Format:␣
→˓file path. This file can be used in the srsRAN_matlab project.
phy_rx_symbols_port: 0 # Optional TEXT. Set to a valid␣

→˓receive port number to dump the IQ symbols from that port only, or set to
→˓"all" to dump the IQ symbols from all UL receive ports. Only works if "phy_
→˓rx_symbols_filename" is set. Supported: [NON-NEGATIVE or all].
phy_rx_symbols_prach: 0 # Optional BOOLEAN (0). Set to true␣

(continues on next page)

10.2. Configuration Parameters 43

srsRAN Project Documentation

(continued from previous page)

→˓to dump the IQ symbols from all the PRACH ports. Only works if "phy_rx_
→˓symbols_filename" is set. Supported: [0, 1].
tracing_filename: # Optional TEXT. Set to a valid file␣

→˓name to enable tracing log.

pcap:
ngap_filename: /tmp/gnb_ngap.pcap # Optional TEXT (/tmp/gnb_ngap.pcap).␣

→˓Path for NGAP PCAPs.
ngap_enable: false # Optional BOOL (false). Enable/

→˓disable NGAP packet capture.
e1ap_filename: /tmp/gnb_e1ap.pcap # Optional TEXT (/tmp/gnb_e1ap.pcap).␣

→˓Path for E1AP PCAPs.
e1ap_enable: false # Optional BOOL (false). Enable/

→˓disable E1AP packet capture.
f1ap_filename: /tmp/gnb_f1ap.pcap # Optional TEXT (/tmp/gnb_f1ap.pcap).␣

→˓Path for F1AP PCAPs.
f1ap_enable: false # Optional BOOL (false). Enable/

→˓disable F1AP packet capture.
rlc_filename: /tmp/gnb_rlc.pcap # Optional TEXT (tmp/gnb_rlc.pcap).␣

→˓Path for RLC PCAPs.
rlc_rb_type: all # Optional TEXT. Sets the RLC PCAP RB␣

→˓type. Supported: [all, srb, drb].
rlc_enable: false # Optional BOOL (false). Enable/

→˓disable RLC packet capture.
mac_filename: /tmp/gnb_mac.pcap # Optional TEXT (/tmp/gnb_mac.pcap).␣

→˓Path for MAC PCAPs.
mac_type: udp # Optional TEXT (udp). Sets the MAC␣

→˓PCAP pcap type. Supported: [DLT or UDP].
mac_enable: false # Optional BOOL (false). Enable/

→˓disable MAC packet capture.
e2ap_filename: /tmp/gnb_e2ap.pcap # Optional TEXT (/tmp/gnb_e2ap.pcap).␣

→˓Path for E2AP PCAPs.
e2ap_enable: false # Optional BOOL (false). Enable/

→˓disable E2AP packet capture.
gtpu_filename: /tmp/gnb_gtpu.pcap # Optional TEXT (/tmp/gnb_gtpu.pcap).␣

→˓Path for GTPU PCAPs.
gtpu_enable: false # Optional BOOL (false). Enable/

→˓disable GTPU packet capture.

metrics:
rlc_report_period: 1000 # Optional UINT (1000). Sets the RLC␣

→˓metrics report period in milliseconds. Supported [0 - inf]
rlc_json_enable: 0 # Optional BOOLEAN (0). Enable RLC␣

→˓JSON metrics reporting. Supported: [0, 1].
pdcp_report_period: 0 # Optional UINT (0). Sets the PDCP␣

→˓metrics report period.
cu_cp_statistics_report_period: 1 # Optional UINT (1). Sets the CU-CP␣

→˓statistics report period in seconds. Set this value to 0 to disable this␣
→˓feature. Supported: [0 - inf].

(continues on next page)

44 Chapter 10. Configuration Reference

srsRAN Project Documentation

(continued from previous page)

cu_up_statistics_report_period: 1 # Optional UINT (1). Sets the CU-UP␣
→˓statistics report period in seconds. Set this value to 0 to disable this␣
→˓feature. Supported: [0 - inf].
enable_json_metrics: 0 # Optional BOOLEAN (0). Enables JSON␣

→˓metrics reporting. Supported: [0, 1].
addr: # Optional TEXT:IPV4. Sets the␣

→˓metrics address. Supported: IPV4 address.
port: 55555 # Optional UINT. Sets the metrics UPD␣

→˓port. Supported: [0 - 65535].
autostart_stdout_metrics: 0 # Optional BOOLEAN (0). Sets whether␣

→˓or note to autostart stdout metrics reporting. Supported [0, 1].

10.2. Configuration Parameters 45

CHAPTER

ELEVEN

GRAFANA METRICS GUI

srsRAN allows the reporting and visualization of the CU/DU metrics to a Grafana WebUI. This is done
through the use of a Docker container that comes as standard with the srsRAN code base, located in the
~/srsRAN/docker/ folder. This container allows users to bring up the Grafana dashboard in a single
command.

Further Reading:

• Grafana Docs

11.1 Configuration

To use the Grafana webUI, you will first need to have Docker installed on your system, you will also need
to modify the srsRAN CU/DU configuration file to allow the reporting of the metrics to the necessary
JSON format for use in the webUI.

11.1.1 Docker

Using the Docker Containers included with srsRAN requires docker compose to be installed on your
system. You can read about docker compose here. There are multiple ways to install this, but the most
basic way to do so is to install Docker Desktop. For installing Docker Desktop on linux, take a look at
the Docker documentation.

Note: We recommend using a Docker Compose V2 or later.

11.1.2 srsRAN

To enable the correct reporting of metrics to the Grafana UI, the srsRAN configuration files needs to be
updated to allow the metrics to be output in the correct JSON format and then sent through a udp-socket
to the metrics-server, where it can be parsed and displayed correctly by the GUI.

metrics:
enable_json_metrics: true # Enable reporting metrics in JSON format
addr: 172.19.1.4 # Metrics-server IP
port: 55555 # Metrics-server Port

46

https://grafana.com/oss/grafana/
https://www.docker.com/
https://grafana.com/docs/grafana/latest/?pg=oss-graf&plcmt=hero-btn-2
https://docs.docker.com/compose/
https://docs.docker.com/desktop/install/linux-install/

srsRAN Project Documentation

The addr and port values defined above mirror those set in the docker-compose.yml file found in
~/srsRAN_Project/docker. Any changes in these values must be kept consistent across both files.

11.2 Launching GUI

To launch the docker image for the Grafana UI, run the following command from the main folder con-
taining srsRAN:

sudo docker compose -f docker/docker-compose.yml up grafana

The following output should be observed:

Creating network "docker_ran" with the default driver
Starting metrics_server ...
Starting metrics_server ... done
Creating grafana ... done
Attaching to grafana

Navigating to http://localhost:3300/ in your preferred web browser will allow you to view the UI.

You can then run srsRAN as normal. As the UE(s) connect to the network you will begin to see an output
for each. These figures and graphics will update automatically during runtime, showing plots for each
UE on the network.

11.3 GUI Output

A sample of the UI output can be seen here:

The above figure shows a single COTS UE connected to the network, with different traffic bursts of
varying bandwidth being generated using iPerf. The cell bandwidth is 20 MHz.

11.2. Launching GUI 47

http://localhost:3300/

CHAPTER

TWELVE

TROUBLESHOOTING

For support and help using srsRAN Project, check out the community driven discussion forum.

12.1 Performance Tuning

The following sections outline key steps to improve gNB performance.

12.1.1 CPU Performance Mode

The CPU governor of the PC should be set to performance mode to allow for maximum compute power
and throughput. This can be configured for e.g. Ubuntu using:

echo "performance" | sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_
→˓governor

It is also recommended that users running on a laptop keep the PC connected to a power-source at all
times while running the gNB, as this will avoid performance loss due to CPU frequency scaling on the
machine.

12.1.2 Performance Configuration Script

Before running the gNB application, we recommend tuning your system for best performance. We pro-
vide a script to configure known performance parameters:

• srsran_performance

The script does the following:

1. Sets the scaling governor to performance

2. Disables DRM KMS polling

3. Tunes network buffers (Ethernet based USRPs only)

Run the script as follows from the main project folder:

sudo ./scripts/srsran_performance

48

https://github.com/srsran/srsRAN_Project/discussions
https://github.com/srsran/srsRAN_Project/tree/main/scripts/srsran_performance

srsRAN Project Documentation

12.2 USRP Configuration

Users should always ensure that the USRP they are using is running over USB 3.0 or ethernet and cor-
rectly configured. If UHD is built from source, users will have multiple example applications avail-
able in /usr/lib/uhd/examples/. User can verify their USRP is correctly configured by running the
uhd_benchmark application as follows:

sudo ./benchmark_rate --rx_rate [rate in Hz] --tx_rate [rate in Hz]

More details can be found in this guide on the Ettus Knowledge Base.

12.2.1 USRP Time Calibration

Incorrect time calibration of a USRP can lead to preventing the gNB from receiving PRACH transmis-
sions. The TX/RX time calibration adjusts the offset between TX and RX processing chains delay in the
USRP. This value varies as a function of sampling rate, USRP model and UHD version. Users experi-
encing issues with incorrect time calibration will see a message similar to the following in the logs:

2023-03-08T08:38:34.130365 [UL-PHY0] [I] [1001.18] PRACH: rssi=+0.5dB␣
→˓detected_preambles=[{idx=55 ta=-7.29us power=+85.8dB snr=0.0dB}] t=351.3us
2023-03-08T08:38:34.130377 [FAPI] [E] [0.0] Detected 1 errors in␣
→˓RACH.indication message at slot=1001.18:

- Property=Timing advance offset in nanoseconds, value=-7291, expected␣
→˓value=[0-2005000]

In the above log the PRACH arrived 7.29 us early to the gNB, which at a sampling rate of 23.04 MHz
is approximately 168 samples. The TX/RX offset needs to be adjusted to a higher value than this so that
the PRACH arrives within the detection window. This can be done by adding the following to the config
file under the ru_sdr options:

ru_sdr:
time_alignment_calibration: -170 # This will set an offset of -170␣

→˓samples

In general, a larger negative value is better as it will make sure the PRACH falls within the detection
window. The consequence of increasing this too much is that the effective cell size is reduced (this is not
important for a lab set up).

By default the time_alignment_calibration parameter is set to 0. This means that in most SDR
frontends the PRACH will arrive a few samples late within the window. With preamble format 0, there
is enough space in the detection window and this does not cause any problem. However, if you are
trying to set up a very large cell, or using different preamble formats, you might want to set a positive
time_alignment_calibration value such that there is space in the window for UEs far in the cell.

12.2. USRP Configuration 49

https://kb.ettus.com/Verifying_the_Operation_of_the_USRP_Using_UHD_and_GNU_Radio
https://kb.ettus.com/Knowledge_Base

CHAPTER

THIRTEEN

SOFTWARE ARCHITECTURE

A primer on the O-RAN gNB architecture has already been outlined in the Knowledge Base, this can be
found here.

This documentation aims to outline how this architecture is implemented the srsRAN Project codebase.
The function and implementation of each component will be discussed in subsequent sections.

Fig. 1: High level overview of the srsRAN Project codebase architecture showing all main components
and interfaces.

The code implements all of the components and interfaces in the above diagram. All of these elements
have been implemented in software and are fully performant, customizable and compliant with the O-

50

srsRAN Project Documentation

RAN standard. Users can also integrate 3rd-party RICs, RUs, and gNB components with the srsRAN
Project components.

13.1 CU-CP

Fig. 2: srsRAN Project CU-CP implementation.

The CU-CP, or Central Unit - Control Plane, is responsible for the handling of control plane messaging,
specifically, the control plane part of the PDCP protocol. In the CU-CP, there are five main components
and four main interfaces. The CU-CP communicates directly with the 5G Core (via the N2 interface),
the CU-UP (via the E1 interface), the DU-high (via the F1-c interface) and can also be connected to the
near-RT RIC (via the E2 interface). This implementation takes a UE-centric approach.

Return to top level architecture diagram.

Components:

• CU-UP Processor: Custom component for handling each CU-UP connected to the CU-CP. Mul-
tiple CU-UPs can be connected to one CU-CP, as a result the E1AP is created inside the CU-UP
processor for each connected CU-UP.

• DU Processor: Custom component for handling DUs for connected to the CU-CP. Each connected
DU has its own DU processor with bundled F1AP, PDCP, and RRC procedures. Each UE con-
nected to the DU also has its own RRC UE containing the PDCP processes.

• UE Manager: Custom component for managing connected UEs in the CU-CP. Responsible for
adding and removing UEs and providing relevant UE information to other processes. Communi-
cates information to/from the CU-UP, DU and Core.

• Measurement Manager: Custom component for managing cell measurement within the gNB.

• Mobility Manager: Custom component for managing UE mobility in the CU-CP.

Interfaces:

• E2: Interface with the near-RT RIC.

• E1: Interface with the CU-UP.

• F1-c: Control plane interface with the DU.

• N2: Control plane interface with the 5G Core (AMF).

13.1. CU-CP 51

srsRAN Project Documentation

13.2 CU-UP

Fig. 3: srsRAN Project CU-UP implementation.

The CU-UP, or Central Unit - User Plane, is responsible for the handling of user plane messaging. Specif-
ically the user plane aspect of the PDCP and SDAP protocols. In the implementation of the CU-UP, there
are four main components and four main interfaces. The CU-UP communicates directly with the UPF in
the 5G Core (via the N3 interface), the CU-UP (via the E1 interface), the DU-high (via the F1-u interface)
and can also be connected to the near-RT RIC (via the E2 interface).

Return to top level architecture diagram.

Components:

• UE Manager: Custom component for managing connected UEs in the CU-UP. Responsible for
adding and removing UEs and providing relevant UE information to other processes. Communi-
cates information to/from the CU-CP, DU and Core.

• GTP-U: The GPRS Tunneling Protocol - User Plane (GTP-U) is responsible for transporting User
Plane traffic to and from the UPF of the 5G Core via the N3 interface.

• SDAP: The Service Data Adaptation Protocol (SDAP) is responsible for adaption and mapping of
Quality of Service (QoS) requirements on User Plan traffic.

• PDCP: The Packet Data Convergence Protocol (PDCP) is responsible for handling the User Plane
data before/ after it enters the DU-high.

Interfaces:

• E2: Interface with the near-RT RIC.

• E1: Interface with the CU-CP.

• F1-u: User plane interface with the DU.

• N3: User plane interface with the 5G Core (UPF).

52 Chapter 13. Software Architecture

srsRAN Project Documentation

13.3 DU-high

Fig. 4: srsRAN Project DU-high implementation

The DU-high, or Distributed Unit - High, is responsible for the handling of both uplink and downlink
traffic. Specifically the MAC and RLC processing of these signals. The DU-high, has three main com-
ponents and three main interfaces. The DU-high communicates directly with the CU-CP and CU-UP
via the F1-c and F1-u interfaces, the DU-low via the FAPI interface, and can also be connected to the
near-RT RIC via the E2 interface.

Return to top level architecture diagram.

Components:

• DU Manager: The DU Manager is responsible for managing the DU, specifically the connected
UEs and RAN Resources.

• RLC: The Radio Link Control (RLC) layer sits between the MAC in the DU-high and the
F1AP/PDCP in the CU, and provides the transport services for SRBs and PRBs between these
layers. It operates in three modes: transparent, unacknowledged and acknowledged.

• MAC: The Medium Access Control (MAC) is responsible for the encoding and decoding of MAC
PDUs, scheduling uplink and downlink grants and other control services.

Interfaces:

• E2: Interfaces with the nRT RIC.

13.3. DU-high 53

srsRAN Project Documentation

• F1: Interfaces with the CU control and user plane.

• FAPI: Interface between the DU-high and DU-low.

Contents:

13.3.1 DU Manager

The DU manager acts as a mediator in the process of configuring different layers of the DU. It is particu-
larly important in the pre-operational stage, when it provides system information to the FAPI, MAC and
F1AP that is essential to their operation. The DU manager is also essential during the operational stage,
in the creation/reconfiguration/deletion of UEs and in the dynamic connection between bearers across
different layers.

The main responsibilities of the DU Manager include:

• Configuring the MAC, FAPI and F1AP during the pre-operational stage with relevant DU system
information, such as supported DU cells and their configuration

• Orchestration of the creation/reconfiguration/removal of UEs in the DU, in particular, the setting
up of UE contexts in the MAC, FAPI and F1AP.

• Orchestration of the creation/reconfiguration/removal of UE bearers in MAC, RLC and F1AP, and
connection of each bearer with its respective upper and lower layers.

• Management of commands received through E2.

The DU Manager contains the following components:

• UE Manager: Manages the UEs connected to the DU

• RAN Resource Manager: Manages the physical RAN resources associated with the DU

13.3.2 Radio Link Control (RLC)

RLC layer connects the MAC and the F1AP/PDCP, as shown in rlcstack, and provides that transfer
services to these layers.

It does this, by providing three different modes:

• Transparent Mode (TM)

TM is used only in control signaling (SRB0 only) and provides data transfer ser-
vices without modifying the SDUs/PDUs at all.

• Unacknowledged Mode (UM)

UM can only be used in data traffic (DRBs only) and provides data transfer ser-
vices with segmentation/reassembly. It is usually used in delay-sensitive and loss-
tolerant traffic, as it does not provide re-transmissions.

• Acknowledged Mode (AM)

54 Chapter 13. Software Architecture

srsRAN Project Documentation

Fig. 5: RLC stack

AM can be used in data and control traffic (mandatory for SRBs, optional for
DRBs) and provides data transfer services with segmentation and ARQ proce-
dures. This mode is usually used for traffic that is more loss-sensitive, but more
delay-tolerant.

RLC Acknowledged Mode (AM)

The RLC AM provides data transfer services with segmentation/concatenation and ARQ. It does this by
keeping two windows, one for TX and another for RX, which store information regarding the transmit-
ted/received SDUs. Unlike LTE, each window entry will contain information regarding a – single – SDU
and its associated Sequence Number (SN).

Depending on the provided space in each transmission opportunity that is indicated by lower layer (MAC),
the RLC may split SDUs into smaller SDU segments. The RX entity is responsible to store the received
SDU segments in the RX window, and to pass the assembled SDU to the upper layer when it is fully
received.

To provide ARQ services, the RX entity will generate Status Reports with the information of which
SDUs/SDU segments have been received. This will be transmitted to the peer RLC entity, which will
use the NACK information to trigger re-transmissions. The Tx entity will keep information regarding
the transmitted SDUs on its TX window, so that it can retransmit the SDUs requested by its peer. This
information is freed when the SDUs have been sequentially ACKed.

13.3. DU-high 55

srsRAN Project Documentation

Data transmission

In rlctxentity, we can see a simplified illustration of the RLC AM Tx entity. There, we can see two
threads do the work of pushing SDUs into the RLC and pulling PDUs from the RLC.

Fig. 6: Tx entity data path

The thread from the UE executor will push SDUs from the F1/PDCP into a thread-safe queue. The thread
from the Cell Executor will call the pull_pdu() method to pull PDUs from the RLC. The MAC will let
know the RLC the size of the grant that it can fill, and the TX entity of the RLC will fill the payload with
a new PDU, a retransmission or a status report. The pull_pdu() can be called multiple times in a single
slot.

When a PDU is pulled, the RLC entity will generate either a status report, an RETX, an SDU segment,
or a new PDU, in that order of priority. When generating a new PDU, the RLC will keep the information
about the RLC SDU in the TX window, most notably copy of the SDU bytes, and the next Segment Offset
(SO), i.e the progress in case of segmentation.

This will be kept until the transmitted PDUs are ACKed in sequence. This is illustrated in rlctxwindow.

56 Chapter 13. Software Architecture

srsRAN Project Documentation

There, we can see that the TX window will maintain two state variables: Tx_Next_Ack and Tx_Next.
Tx_Next_Ack refers to the bottom of the TX window, i.e., the SN next to the last PDU that has been
sequentially ACKed. Tx_Next is the SN that will be assigned to the next PDU.

Fig. 7: Tx window

We will detail the RETX and Status Report generation later on, but first it is important to detail the
reception of RLC data PDUs.

Data reception

We can see in figure rlcrxentity a simplified illustration of the RLC AM Rx entity. There we can see
that only a single thread will push PDUs into the RLC Rx entity, the UE executor thread. When receiving
a PDU, first the thing the entity will do is to check whether this is a Data PDU or a Control PDU (i.e. a
status report.)

If it is a Data PDU, the SDU or SDU segment will be added/appended to the RX window, using the
received SN. If the SDU has been fully received, SDU will be passed to the upper layers. The RX
window will release the SDU information, when all SDUs have been received in order.

This is illustrated in rlcrxwindow, where we can see four state variables: RX_Next, RX_Highest_Status,
RX_Next_Status_Trigger and RX_Next_Highest. There RX_Next, the lower edge of the RX window,
will contain the first PDU that has not been fully received. RX_Next_Higest, the higher edge of the
Rx window, is the highest PDU received. The RX window will also keep RX_Highest_Status, which
is the SN of the first SDU that is considered lost, as determined by the t-Reassembly timer. Finally,
the RX_Next_Status_trigger, will keep the SN that triggered the t-Reassembly. This is for updating
RX_Highest_Status to the first known lost PDU, when t-Reassembly expires and new losses are detected.

ARQ and status reporting

When the RLC receives a PDU with the header’s Polling Bit set, and t-Status-Prohibit is not running,
the RLC entity must transmit a status report to its peer in the next transmit opportunity. The TX entity
will check whether the status report is required, by checking a boolean in the RX entity, that is set upon
receiving the polling bit.

If the status report is required, the TX entity will retrieve a cached status report from the RX entity.
This cached status report is updated at the reception of every PDU, to avoid blocking blocking the MAC
generating a status report during the pull_pdu().

An illustration of the process of generating the Status Report can be found in rlcstatusgeneration.

When the RLC receives a Status Report, it must be passed to the TX entity for processing. The TX entity
will use the received status report to update the TX window and the RETX queue. Because both the
UE executor thread and Cell Executor thread can update both the TX window and RETX queue, both

13.3. DU-high 57

srsRAN Project Documentation

Fig. 8: Rx entity data path

Fig. 9: Rx window

58 Chapter 13. Software Architecture

srsRAN Project Documentation

Fig. 10: Status Report transmission

of these variables need to be protected with a lock. An illustration of the process of handling the Status
Report can be found in rlcstatushandling.

Fig. 11: Status Report handling

MAC buffer status reporting

The MAC needs to know the size of the buffer in the RLC TX entity to give appropriate grants. As
polling by the MAC is inefficient when there are many inactive UEs and bearers, the RLC will push the
new state of the buffer whenever this value is updated. This can be done when a PDU is pulled, when a
PDU is received, or when a timer expires that, for example, requires an update to the status report.

As this can be done from any thread, cached sizes of all queues and any pending status report are kept,
so we can update the buffer state with minimal blocking to the MAC.

13.3. DU-high 59

srsRAN Project Documentation

13.3.3 MAC

The main responsibilities of the MAC are:

• Encoding and decoding of MAC PDUs that are sent/received to the PHY via the FAPI interface

• Contains the gNB scheduler, which allocates DL/UL grants for System Information, Paging, UE
data (RLC PDUs + MAC CEs) and Random Access handling.

• Demultiplexing and forwarding of decoded MAC Rx SDUs to their respective logical channel.

• Handle received MAC CEs

• PRACH handling and RNTI allocation

Implementation

The MAC is divided into the following sub-components:

• MAC Controller:

Translates DU configuration requests into configuration commands that can be understood by the
remaining MAC sub-components. The MAC controller ensures that the other components are
configured with minimal service disruption in terms of traffic latency and avoiding any race con-
ditions. The configuration commands that the DU manager sends to the MAC controller include
the addition of new DU cells and addition/reconfiguration/removal of UEs. This is implemented
in the mac_controller class.

60 Chapter 13. Software Architecture

srsRAN Project Documentation

• RACH Handler:

Manages the allocation of RNTIs for the received PRACH preambles and association of reach
RNTI to a DU UE Index. Which is implemented in the rach_handler class.

• MAC UL Processor:

Decodes the received MAC PDUs and forwards the resulting MAC SDUs to their respective log-
ical channels using the DEMUX component and forwards the UL Buffer Status Reports to the
Scheduler. This is implemented in the mac_ul_processor class.

• MAC DL processor:

Manages the MAC scheduler. This is implemented in the mac_dl_processor class.

RA Procedure

The Random Access procedure is handled primarily by the DU MAC in the following steps:

1. The RACH handler manages the allocation of temporary RNTIs (TC-RNTIs) for each of the de-
tected PRACH preambles in a given slot, and forwarding of these preambles and TC-RNTIs to the
scheduler.

2. The scheduler is then responsible for allocating the RAR and Msg3 grant for each detected PRACH
preamble.

3. The MAC DL processor has the role of encoding the MAC DL PDUs sent to the PHY.

This leads to the following messaging flow graph:

It is worth noting, that the creation of a new UE in the DU is deferred until Msg3 is received. This design
has the following advantages:

• UE Resources are not allocated unnecessarily for the cases when a phantom PRACH is detected,
the UE fails to detect the RAR, or the Msg3 is not correctly decoded by the gNB.

• UE Resources are allocated after the RAR window has passed. With this design, any latency in
the UE resource allocation thus won’t affect the ability of the scheduler to timely schedule RARs.
Notice that the RAR window in NR can be relatively short, depending on the type of service
provided.

13.4 DU-low

The DU-low, or Distributed Unit - Low, is responsible for the handling of both uplink and downlink
traffic. Specifically, it handles the Upper PHY processing related to these signals. The DU-low, contains
only the Upper PHY and has two main interfaces. The DU-low communicates directly with the DU-
high via the FAPI interface, and with the RU via the Open FrontHaul (OFH) interface. The lower PHY
processing is carried out in the RU. This architecture is specific to ORAN Split 7.2. You can read more
about split 7.2 here .

Return to top level architecture diagram.

Components:

• Upper PHY: The Upper PHY handles the processing of UL and DL signals coming from and to
the RU.

13.4. DU-low 61

srsRAN Project Documentation

62 Chapter 13. Software Architecture

srsRAN Project Documentation

Fig. 12: srsRAN Project DU-low implementation

13.4. DU-low 63

srsRAN Project Documentation

Interfaces:

• FAPI: Interfaces with the MAC in the DU-high.

• OFH: Interfaces with the lower PHY in the Radio Unit (RU).

64 Chapter 13. Software Architecture

CHAPTER

FOURTEEN

CODE STYLE GUIDE

This document establishes the basic guidelines and recommendations for C and C++ programming styles
within the srsRAN Project code base. Many of the guidelines are C++ specific, however some can still be
applied to C. The main goal of this document is to help establish a consistent programming style through-
out the srsRAN Project code base, and improve the readability and maintainability of code committed
by users.

This document is heavily inspired in LLVM’s coding standards, please refer to this if you would like to
take a further look into coding standards and best practices.

Contents:

14.1 Language and libraries

14.1.1 C & C++ version

The srsRAN Project project is written in standard C++14, thus it is important to avoid the use of compiler
specific extensions to ease code portability and adding support for additional toolchains in the future.

If you need to use custom features such as builtin functions, guard them behind a macro or a function
and always provide a fallback mechanism for toolchains where this feature is not available.

srsRAN Project is compiled and tested using the following toolchains with the following minimum re-
quirements:

• GCC 9.4.0

• Clang 10.0.0

Note: We recommend using Ubuntu 22.04, with GCC 11.3.0 and Clang 14.0.0

65

https://llvm.org/docs/CodingStandards.html

srsRAN Project Documentation

14.1.2 Use of the C++ standard library

It is really encouraged to use the C++ standard library to avoid reinventing the wheel for many common
programming tasks and utilities.

When writing C++ code, it is preferable to use the C++ library functions instead of falling back to the C
library if possible. For example: std::this_thread::sleep_for() vs ::usleep().

Additionally, the srsRAN Project code base provides many additional support utilities and custom ab-
stract data types. So before implementing a new utility or container, please check if it has been already
implemented or if an existing one could be extended.

When both C++ and the srsRAN Project support libraries provide similar functionality, and there is a
reason to not favor the C++ implementation, it is generally preferable to use the srsRAN Project support
library, especially for custom containers found in the ADT folder.

14.2 Mechanical source aspects

14.2.1 Source Code Formatting

The srsRAN Project project uses a defined set of formatting rules, and heavily relies on clang-format for
automatic source code formatting. You must use the custom clang-format file in the root of the repository,
see here for more information about the options found in this file.

If you are interested in specific rules regarding spaces, maximum width, etc., then please check the
contents of the above file.

When adding new commits to the repository, please make sure you have formatted your new changes
with clang-format before submitting them.

14.2.2 Comments

Comments have to be regarded as an essential part of the code, as they greatly facilitate reviewers’ and
maintainers’ tasks. From this perspective, comments should describe what the code is trying to do and
why, without getting into the implementation details at a micro level and, most importantly, targeting an
audience that may not be as familiar as you are with the topic at hand.

The following brief sections provide a very rough introduction to how developers are expected to com-
ment code. A more thorough guide can be found here.

Comment Guidelines

• Write comments as English prose, using proper capitalization, punctuation, etc., ending them with
a period sign. Words are spelled in American English, as given by the main entry of The Merriam-
Webster Dictionary.

• Comment lines should start with a double slash for normal comments and with a triple slash for
documentation comments. The double/triple-slash format should be used always, also for multiline
comments.

66 Chapter 14. Code Style Guide

https://clang.llvm.org/docs/ClangFormatStyleOptions.html
https://www.merriam-webster.com/
https://www.merriam-webster.com/

srsRAN Project Documentation

/// \brief Does something.
///
/// More details about the function.
void some_func(){
// Now we print a simple text.
fmt::print("Some comment.");

}

• Comments should always start on a new line above the code that is being commented. Specifically,
documentation comments should precede the class or function declarations and not go inside their
body. Normal comments cannot be placed next to the code or outside the body of a function.

// Some general comment outside the body of a function - WRONG!

/// Does something. - OK
void some_func(){
// Now we print a simple text. - OK
fmt::print("Some comment.");

fmt::print("Something else."); // Side comment. - WRONG!
}

• In cases where indentation is helpful to support the content of the comment, the suggested form
is to start the line with one or more “greater than” (>) signs, depending on the indentation level.
For instance, the comments in the example below suggest that the PUCCH configuration is a step
within the UL configuration.

uplink_config srsran::config_helpers::make_default_ue_uplink_config(const␣
→˓cell_config_builder_params& params)
{
// > UL configuration.
uplink_config ul_config{};
ul_config.init_ul_bwp.pucch_cfg.emplace();

// >> PUCCH configuration.
auto& pucch_cfg = ul_config.init_ul_bwp.pucch_cfg.value();

// ... more code ...
}

• C-style comments /* */ are, in general, not allowed. The only exceptions are file headers (see
below) and the documentation of parameters in a function call (very useful when, e.g., passing a
bool or a nullptr as arguments).

// Hard to see what "true" and "nullptr" actually refer to.
obj.method(a, b, true, nullptr);
// Easy to see what the input values actually do.
obj.method(a, b, /*enable_X=*/true, /*options=*/nullptr);

• Merge requests should not contain lines of code that have been commented out. If you really need
to do it for documentation purposes or maybe for debug printing, use #if 0 and #endif. These
nest properly and are better behaved in general than C-style comments.

14.2. Mechanical source aspects 67

srsRAN Project Documentation

File Headers

Every source file of the project should have a copyright header and a short description of the basic purpose
of the file. The standard header looks like the example below.

/*
*
* Copyright 2021-2023 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/

14.2.3 Header Guards

All header files should have an include guard to prevent double inclusion. The srsRAN Project codebase
uses the #pragma once directive, which is widely supported by common compilers. Unlike conventional
include guards (via #ifndef and #define), neither a unique identifier nor a closing expression (#endif)
is required.

The following example shows this:

/*
* File header...
*/

#pragma once

#include "foo.h"
#include <file.h>

namespace srsgnb {
// ...
} // srsgnb

68 Chapter 14. Code Style Guide

srsRAN Project Documentation

14.2.4 #include Style

Try to include a minimal list of #include and keep it clean of redundant header files as dependencies
change. To that end, it is OK to exploit the fact that includes propagate transitively. So, if for instance
foo.h already includes bar.h, only foo.h needs to be included when using functions or classes from both
files.

The include list should be immediately after the header file comment, and after the include guards if
working on a header file. Include files should be listed in the following order:

1. Main module header.

2. Local and private headers.

3. SRSRAN project or subproject headers (srsgnb/. . . , srsue/. . . , srsran/. . . , etc).

4. System library includes.

Keep each category sorted lexicographically by the full path and avoid adding newlines between cate-
gories or include directives. The main module header should be always the first in the list. Sub-project
headers should be included before srsran headers (from most specific to least specific eg:srsgnb before
srsran).

#include "my_class_header.h" // category 1
#include "private_module_utils.h" // category 2
#include "srsenb/hdr/public_header.h" // category 3
#include "srsran/adt/bounded_vector.h" // category 3
#include <string> // category 4
#include <vector> // category 4

Use C++ library header files in C++ files instead of using the C library headers, eg: cstring, cassert,
cstdint, etc.

As a final note, clang-format will lexicographically sort all includes files automatically for you.

14.2.5 Language and compiler aspects

Treat compiler warnings as errors

Avoid submitting code that generates compiler warnings. Sometimes you may get a false positive warn-
ing, in this case find a way to suppress it.

Code Portability

Try to write portable code under all circumstances. If you are under the situation where you need to do
something that is not portable, then put it behind a documented interface so it is centralized in a single
place and not scattered in different places.

14.2. Mechanical source aspects 69

srsRAN Project Documentation

Avoid RTTI and Exceptions

In C++ code, do not use exceptions or RTTI (runtime type information eg:dynamic_cast<>).

Use of auto

In general, use auto when it makes the code more readable and easier to maintain. Typical cases would
be for iterators or complex template types. Some examples:

auto *p = std::unique_ptr<int>(new int); // good: easy to infer that p is an␣
→˓int*
auto i = my_map.begin(); // good, easy to see it is an␣
→˓iterator and avoids writing std::unordered_map<std::string, int>::iterator
auto a = my_func(); // bad: what type does my_func␣
→˓return?

14.3 Style Aspects: High Level Issues

14.3.1 Self-contained Headers

Header files should be self-contained, this means that they can compile on their own.

In general, a header may be implemented by one or more source files. Each of these source files will
include the header file that defines the interface first in the include list (see include style).

14.3.2 Using #include Sparingly

Headers included in other header files propagate transitively. For instance, if header file foo.h includes
header file bar.h, any file that includes foo.h will also include bar.h implicitly. To avoid long compi-
lation times, includes of large header files should be taken with care.

When you are about to include a large header file large_include.h in another header file my_module.
h, consider the following improvements:

1. Can large_include.h be included by the respective source file my_module.cpp instead? This
will avoid the transitive propagation of large_include.h by any file that includes my_module.h.

2. Can my_module.h just include a subset of the large_include.h included headers? E.g.
my_module.h may just need access to interface definitions, rather than derived class implementa-
tions.

3. If 1. is not possible without altering code, consider making forward declarations of
large_include.h types and use reference/pointers in my_module.h. Then, place the
large_include.h header in my_module.cpp instead.

70 Chapter 14. Code Style Guide

srsRAN Project Documentation

14.3.3 Using “Internal” Headers

When writing a module, avoid adding implementation details, helper classes and utility functions in the
public interface header that are only meant to be used by the module internally. Instead, create a private
header file in the same directory as the source files and include it locally. This will avoid polluting the
public interface with unnecessary dependencies reducing recompilations.

14.3.4 Use of namespace

Avoid opening namespace blocks inside a .cpp file that spans for the complete file.

When adding a free function implementation in a .cpp file, avoid opening namespace blocks. Instead,
use the namespace qualifier to ensure that the function definition matches the new declaration.

// foo.h
namespace srsran {
int foo(const char *s);
}

// foo.cpp
#include "foo.h"
using namespace srsran;
int srsran::foo(const char *s) {
// ...

}

Avoid this:

// foo.cpp

#include "foo.h"
namespace srsran { // Namespace block.
int foo(char *s) { // Mismatch between "const char *" and "char *"

// ...
}
} // end namespace srsran

The above code snippet will add a new overload of srsran::foo instead of providing a definition of the
existing function declared in the header. To make things a bit worse, this error will be detected by the
linker towards the end of the build, instead of being detected instantly by the compiler.

A final word about namespace qualification: when you need to call a C library or system function like
read(), socket(), etc, you should prefix the calls with :: such as ::socket(), this will avoid potential
name clashes and unexpected behavior.

14.3. Style Aspects: High Level Issues 71

srsRAN Project Documentation

14.3.5 Using “early exits” and continue

When reading code, keep in mind how much state information and how many previous decisions have to
be remembered by the reader to understand a block of code. Aim to reduce indentation where possible,
unless doing so would make the code more readable. One great way to do this is by making use of early
exits and the continue keyword in long loops.

This example does not use early exits:

int *my_function(my_class *p) {
if (!p->f1() && p->f2() &&

my_other_function(p)) {
// ... some long code

}

return nullptr;
}

This can be transformed to:

int *my_function(my_class *p) {
// f1 for this p is true because ...
if (p->f1()) {
return nullptr;

}

// f2 for this p is false because ...
if (!p->f2()) {
return nullptr;

}

// Something else ...
if (!my_other_function(p)) {
return nullptr;

}

// ... some long code
}

Similarly, in loops:

for (int i : my_vector) {
if (i % 7 == 0) {
if (check_something(i)) {
do_something(i);

} else {
// ... some long code

}
}

}

Can be transformed to:

72 Chapter 14. Code Style Guide

srsRAN Project Documentation

for (int i : my_vector) {
if (i % 7 != 0) {
continue;

}
if (check_something(i)) {

do_something(i);
continue;

}
// ... some long code

}

14.3.6 Avoid else after a return statement

Following the same reasoning as the previous point, avoid using else or else if after a statement that
interrupts control flow like return, break, continue, goto, etc.

For example:

case 2: {
if (something) {
v = get_buffer_type_1();
if (!v.is_valid()) {

error_string = "Invalid buffer type 1";
return -1;

} else {
break;

}
} else {
v = get_buffer_type_2();
if (!v.is_valid()) {

error_string = "Invalid buffer type 2";
return -1;

} else {
break;

}
}

}

Can be transformed to:

case 2: {
if (something) {
v = get_buffer_type_1();
if (!v.is_valid()) {

error_string = "Invalid buffer type 1";
return -1;

}
} else {

v = get_buffer_type_2();
if (!v.is_valid()) {

(continues on next page)

14.3. Style Aspects: High Level Issues 73

srsRAN Project Documentation

(continued from previous page)

error_string = "Invalid buffer type 2";
return -1;

}
}
break;

}

Or optimally to:

case 2: {
if (something) {
v = get_buffer_type_1();

} else {
v = get_buffer_type_2();

}

if (!v.is_valid()) {
error_string = (something) ? "Invalid buffer type 1"

: "Invalid buffer type 2";
return -1;

}
break;

}

This way helps to understand the code better as you need to keep track of less context and reduces inden-
tation.

14.3.7 Use of Static Helper Functions

It is very common to write small loops that just compute a boolean value, for example:

bool found_valid = false;
for (unsigned i = 0, e = vector.size(); i != e; **i)
if (vector[i]->is_valid()) {
found_valid = true;
break;

}

if (found_valid) {
...

}

Instead of writing this loop inside a bigger function, extract it to a predicate function (usually static) that
also uses early exits:

/// Returns true if the input vector contains a valid buffer.
static bool has_valid_buffer(const std::vector<buffer *> &vector) {
for (unsigned i = 0, e = vector.size(); i != e; **i) {
if (vector[i]->is_valid()) {

(continues on next page)

74 Chapter 14. Code Style Guide

srsRAN Project Documentation

(continued from previous page)

return true;
}

}
return false;

}
...
if (has_valid_buffer(vector)) {

...
}

Writing it this way has many benefits:

1. Reduces indentation.

2. Factors code that can be potentially reused by other places.

3. Forces the programmer to give a name for the function, converting a piece of code into a con-
cept which is easier to understand by the reader (a raw loop vs a function call with name
has_valid_buffer()).

4. Includes a documentation block for the function.

Please extrapolate this example to more complex cases where the predicate is not as obvious. Instead
of being faced with all the inline details of how the predicate is checked, we can trust the function and
continue reading with better locality.

14.4 Style Aspects: Low Level Issues

14.4.1 Naming Conventions

Names should be coded following the snake_case pattern. For variables, functions and classes the name
schema will always be lowercase and separate the words by an underscore. Exceptions are SI units and
other common units with uppercase letters (dB, dBm) which should be kept in their original form. Names
should be descriptive and easy to read and avoid abbreviations unless they are well known.

int n_pdu // Not so good, it's difficult to imagine what represents.
int number_of_pdu // Good, descriptive name.
int pdu_count // Good, descriptive name.
int path_loss_dB // Good, descriptive name with unit suffix.

Non-descriptive names should be avoided except for iterators in for loops or variables within a very
small scope.

for (unsigned i = 0, e = size; i != e; ++i) { // i and e are iterators inside␣
→˓a for loop.
std::lock_guard<std::mutex> lck(mutex); // Good as the scope is only 2␣

→˓lines long.
detach(i);

}

Names should follow these rules (always use snake_case):

14.4. Style Aspects: Low Level Issues 75

https://en.wikipedia.org/wiki/Snake_case#:~:text=Snake%20case%20(stylized%20as%20snake_case,subroutine%20names%2C%20and%20for%20filenames.

srsRAN Project Documentation

• Type names (classes, structs, enums, typedefs, . . .) should be nouns.

• Variable names should be nouns (they represent state).

• Function names should be verb phrases (they represent actions) and command-like functions
should be imperative.

• Enum declarations are types, so they should follow the naming conventions for types.

• Enumerators (eg: enum { red, green }) should follow the naming conventions for types. Enumer-
ators that are convenience constants should be written in uppercase. For instance:

enum {
MAX_ELEMENTS = 32,
BYTES_PER_ELEMENT = 64

};

14.4.2 Assert and expect

The srsRAN project provides a custom assert macro called srsran_assert. Use it as much as you can
to check all your preconditions and assumptions. This will help to reduce debugging times as the assert
may be triggered by your code or even by external faulty code.

Make sure to write a descriptive error message in the assert statement, which will be printed when the
assertion is triggered. For example:

char *get(unsigned idx) {
srsran_assert(idx < v.size() && "get() out of range!");
return v[idx];

}

Other additional examples:

srsran_assert(buffer->is_valid() && "Buffer should always be valid!");
srsran_assert((channel == DLSCH || channel == ULSCH) && "Channel type is␣
→˓invalid!");
srsran_assert(idx < get_num_ues() && "UE index value is out of range!");
srsran_assert(v1.size() == v2.size() && "vector sizes must be identical!");

Note: If an error condition can be triggered by user input then do not use an assert, instead, use a
recoverable error mechanism.

Warning: which?

Another nice side effect of using assertions is that you can apply the “design by contract” approach for
many interfaces, helping to reduce a lot of error checks and error handling clutter. As software is usually
layered, you may validate user inputs in a certain layer, keeping it centralized in a single place and then
let inner layer interfaces be designed by contract by using assertions. Using this approach will benefit
the appearance of simpler interfaces, reduces corner cases and the implementation will have less states
to validate which will reduce bugs in untested corner cases.

76 Chapter 14. Code Style Guide

srsRAN Project Documentation

When using assertions you may get warnings for “unused value” if assertions are disabled (mainly in
release builds). For example:

unsigned size = v.size();
srsran_assert(size > 42 && "Vector smaller than it should be");

bool is_value_new = set.insert(x);
srsran_assert(is_value_new && "The value shouldn't be in the set yet");

In the first case, the call to v.size() is only useful in the assert, and we don’t want it executed if
assertions are disabled. In this case the code should be moved inside the assertion. In the second case,
the side effects of the call must happen whether the assert is enabled or not. In this case, the value should
be cast to void to disable the warning.

srsran_assert(v.size() > 42 && "Vector smaller than it should be");

bool is_value_new = set.insert(x);
(void)is_new_value;
srsran_assert(is_value_new && "The value shouldn't be in the set yet");

Warning: write something about expect

14.4.3 Do not use using namespace std

When you need to refer to identifiers in the standard library then prefer to explicitly use a std:: prefix
rather than relying in using namespace std;. In header files, adding a using namespace directive will
pollute the namespace of any source file that includes this header, causing maintenance issues.

The exception to this rule (not for the std namespace) is for implementation files (.cpp). For example,
all the code in the srsRAN project implements code that lives in the srsran namespace. In this case, it
is clearer for the .cpp files to have a using namespace srsran directive at the top of the file, just after the
include list. This will reduce indentation in the body of the file.

The general form of this rule is that any .cpp file that implement code in any namespace may use that
namespace, including its parents, but should not use any others.

14.4.4 Using Range for Loops

Since the introduction of range-based for loops in C++11, it is rarely necessary to do any kind of explicit
manipulation of iterators. Try to use range-based for loops wherever possible, for example:

for (const auto &ue : ue_db)
... use ue ...

14.4. Style Aspects: Low Level Issues 77

srsRAN Project Documentation

14.4.5 Loop Structure

In cases where a range-based for loop cannot be used and it is necessary to write an explicit iterator-based
loop, pay attention to the whether end() is re-evaluated on each loop iteration. The most common mistake
is writing a loop this way:

for (auto i = x.begin(); i != x.end(); ++i)
... use i ...

The problem is that it evaluates x.end() on each iteration. Instead, use loops that evaluate it once before
the loops starts. This can be done using this form:

for (auto i = x.begin(), e = x.end(); i != e; ++i)
... use i ...

Note: These two loops have different semantics: if the container is being mutated inside the loop, x.
end() may change its value every time through the loop, so the second form may not be correct. If you
actually depend on this behavior, please write the loop in the first form and add a comment indicating
you did it intentionally.

By consistently using the second form, the reader will implicitly see that the loop is not mutating the
container without needing to analyse the loop body, making easier to read and understand what the code
does.

In general, the C++ syntax for iterator comparison in loops is to use the != operator instead of <. This
should be used consistently, even if the iterator is a plain integer.

For example, the preferred form looks like this:

for (unsigned i = 0, e = x.size(); i != e; ++i)
... use i ...

Instead of the C-style way:

for (unsigned i = 0, e = x.size(); i < e; ++i)
... use i ...

78 Chapter 14. Code Style Guide

srsRAN Project Documentation

14.4.6 Using Pre-increment

In C++ (does not apply to C code), pre-increment (++x) may be no slower than post-increment (x++) and
could be a lot faster than it. As a result, it is preferential to use pre-increment whenever possible.

14.4.7 Use of Anonymous Namespaces

Use an anonymous namespace for making the contents surrounding it private to the file, just like static
is used for C functions and global variables.

The problem with anonymous namespaces is that they encourage indentation of their body, and they
reduce locality of reference: if you see a random function definition in a C++ file, it is easy to see if it is
marked as static, but seeing if it is inside an anonymous namespace may require scanning a big chunk of
the file.

For these reasons, follow this simple rule: make anonymous namespaces as small as possible and only
use them for class declarations, not for functions.

namespace {
class foo { // foo class has internal linkage
...

public:
int bar(); // define this method outside the anonymous namespace.
...

};
} // end anonymous namespace

static void some_helper() { // static function marked as static outside␣
→˓anonymous namespace.
...

}

int foo::bar() { // method definition outside of anonymous namespace to keep␣
→˓namespace as compact as possible.
return 42;

}

14.4.8 Using C++ Casts

Avoid using C-style casts in C++ code.

C++ casts are more explicit to read in code than the C counterpart. Another reason is that C++ has four
different types of casts, allowing the programmer to choose the right tool depending on the circumstances.
While the C cast may be used for any case and potentially disabling any warnings from the compiler.

14.4. Style Aspects: Low Level Issues 79

srsRAN Project Documentation

14.5 Recommendations

14.5.1 Function and Class Length

Avoid writing classes or functions that are too large.

As a rule of thumb, functions should fit in a window and no scrolling should be needed to review them.
Try to write functions that only do one thing or action. If you write a function that does more than one
thing, try to split it into multiple functions, each of which do a single thing. This will dramatically improve
code maintainability. By using concise function names, and by having each function well documented,
code will be much easier to understand.

For classes, it is harder to set a maximum number of lines, so instead, give a class a single responsibility.
Although the concept of responsibility may sound abstract, another way of thinking about it is that a class
should only have “one reason to change”. If a class does multiple things or responsibilities, it is better to
split it into multiple classes. This way we may avoid falling into the god class anti-pattern which can be
a maintenance nightmare.

14.5.2 Scope

Define variables where they are going to be used, making their scope as short as possible. This applies
to both C++ and C code.

For example:

int i;
float f;
...
... other unrelated code ...
...
f = get_float();
a = f * get_multiplier();

Should be transformed to:

...

... other unrelated code ...

...
float f = get_float();
int i = f * get_multiplier();

14.5.3 Logical Operators

The codebase uses the standard form of logical operators:

-&&, || and !

As opposed to the alternative form:

• and, or and not

The following code block shows the correct and incorrect use of logical operators:

80 Chapter 14. Code Style Guide

srsRAN Project Documentation

if (!a && (b == 8)) // Correct, only used the standard form.

if (not a && (b == 8)) // Incorrect, used 'not' instead of the standard form '!
→˓'.

14.5.4 Using References(&) Over Pointers(*)

In the general, it is better to use references instead of pointers. C++ references have a simpler syntax than
pointers and always refer to a valid object (unless you do some undefined behavior).

Pointers are very useful when the pointed object may optionally be nullptr, however managing this case
may require adding additional checks to manage this situation.

static bool check_objects_are_equal(foo *left, foo *right); //␣
→˓Bad, left or right may be nullptr, prefer references.
static bool check_objects_are_equal(foo left, foo right); //␣
→˓Bad, copies objects.
static bool check_objects_are_equal(foo &left, foo &right); //␣
→˓Bad, missing const, checking the objects should not modify them.
static bool check_objects_are_equal(const foo &left, const foo &right); //␣
→˓Good.
static void fill_optional_object(foo *x); //␣
→˓Good, x is optional, function checks for nullptr.

14.5.5 Const Correctness

Write code that is const correct.

const object& get_object() const; // Return value cannot be modified, method␣
→˓does not modify the contents of the class.

14.5.6 Avoid Complex Expressions

Try to use local variables to store intermediate results or to cache the result of a function call when calling
it multiple times and it is known not to change. This will help to avoid complex expressions.

For example:

for (unsigned i = 0; i != get_bar_count(); ++i) {
if (get_bar_count() < i) {
do_something();

}
do_other();

}

Can be transformed to this code, saving many calls to get_bar_count()

14.5. Recommendations 81

srsRAN Project Documentation

unsigned bar_count = get_bar_count();
for (unsigned i = 0; i != bar_count; ++i) {
if (bar_count < i) {
do_something();

}
do_other();

}

There may be cases where you need to work with complex and deep nested structures. In these cases try
to store intermediate members as pointers or references (if writing C++ code) and remember to use const
if only reading the values. This will avoid needless typing, having more compact code and potentially
improving performance for unneeded indirection chasing pointers.

For example:

for (uint32_t j = 0, je = metrics_tmp.size(); j != je; ++j) {
metrics[j].dl.n_samples += metrics_tmp[j].dl.n_samples;
metrics[j].dl.mcs += metrics_tmp[j].dl.n_samples * metrics_tmp[j].dl.mcs;
metrics[j].ul.n_samples += metrics_tmp[j].ul.n_samples;

}

Can be transformed into:

for (uint32_t j = 0, je = metrics_tmp.size(); j != je; ++j) {
downlink_metrics &dl = metrics[j].dl; // store non const reference to␣

→˓access the struct
const downlink_metrics &dl_tmp = metrics_tmp[j].dl; // const ref to access␣

→˓the struct

dl.n_samples += dl_tmp.n_samples;
dl.mcs += dl_tmp.n_samples * dl_tmp.mcs;

const uplink_metrics &ul_tmp = metrics_tmp[j].dl;
ul.n_samples += ul_tmp.n_samples;

}

14.5.7 Magic numbers

Avoid the use of magic numbers. Instead, use a variable (static, constexpr, etc.): this way, you will
be forced to give it a descriptive name, improving code readability.

if (b < 2.0) // Bad
...

static constexpr float detection_threshold_dB = 2.0;
if (b < detection_threshold_dB) // Good - we now know this is a detection␣
→˓threshold value in dBs
...

82 Chapter 14. Code Style Guide

srsRAN Project Documentation

14.5.8 Fixed Width Integer Types

Use the fixed width integer types (uint32_t, etc. . .) found in the cstdint and stdint.h header files
when you need to ensure that a variable needs to be of fixed size, independent of the target architecture.

Usually you will need to use these types when defining message structures, interfacing hardware, network
programming, etc. . . However, avoid using them when the type width is not important because the use of
a fixed size type is a declaration done by the programmer that the affected code needs special treatment
and careful handling.

Notice that all 32-bit architectures and above define int and unsigned int to be of 32-bits, so it is safe
to use the generic types safely unless you know you will need a wider type.

Warning: discussion - bring this point up

for (uint32_t cc_idx = 0; cc_idx != num_cc; ++cc_idx)
// here we know we're never going to exceed 4 billion cc's - safe to use a␣

→˓generic unsigned int (32 bits)

for (uint32_t i = 0, e = vector.size(); i != e; ++i)
// how many elements will the vector hold?
// a) if we know it is going to hold less than 4 billion, use unsigned␣

→˓int (32 bits)
// b) if in doubt, use size_t.
// but as you can see there is no need to use a fixed width type, generic␣

→˓types can be safely used here.

Avoid using the long type since it can be either 32 or 64-bits depending on the architecture. See the
standard definition for more information.

14.5.9 Function signatures

When declaring a function, the list of arguments shall be ordered as follows:

1. Arguments passed by reference or pointer, if any, that are only used to store the function output.
These arguments are documented by the Doxygen command \param[out].

2. Arguments passed by reference or pointer, if any, that contain inputs to the function and will also
be modified by the function itself. These arguments are documented by the Doxygen command
\param[in,out].

3. Arguments passed by value, constant pointer or constant reference, if any, that represent inputs to
the function. These arguments are documented by the Doxygen command \param[in]. In partic-
ular, structures gathering a number of configuration parameters, shall appear last in the argument
list.

For example:

/// \brief Does something.
///
/// This function writes a span, reads and modifies a vector, only reads the␣

(continues on next page)

14.5. Recommendations 83

https://en.cppreference.com/w/cpp/language/types

srsRAN Project Documentation

(continued from previous page)

→˓rest of arguments.
/// \param[out] fnct_out Main function output (recall that \c span␣
→˓behaves like a pointer).
/// \param[in,out] my_vector A vector of integers the function may read␣
→˓and modify.
/// \param[in] another_vector A vector of integers the function may only␣
→˓read.
/// \param[in] quantity Another value the function needs to know␣
→˓about.
/// \param[in] cfg_struct A structure describing the context the␣
→˓function works in.
void my_function(span<int> fnct_out, std::vector<int>& my_vector, const␣
→˓std::vector<int>& another_vector, int quantity, const config_t& cfg_struct);

14.5.10 Class Layout Example

This section describes the recommended layout of a class declaration, recommendations found inline.

/// Class description block.
class my_class : public interface_1 {

// Define private constant configurable parameters first - easy to find␣
→˓by class maintainers to be always in the
// same place.
/// Constant 1 explanation.
static constexpr unsigned some_constant_1 = 2;
/// Constant 2 explanation.
static constexpr unsigned some_constant_2 = 7;

public:
// Declare/define special members first (constructors, destructor, etc...)
// No need to document special members unless something not trivial␣

→˓requires an explanation.
my_class() { ... } // If the ctor body is big, move it down to the cpp␣

→˓file.
~my_class() { ... } // Likewise, if the dtor body is big, move it down␣

→˓to the cpp file.

/// Method 1 explanation block.
void method1();
// Separate method declarations with a single newline.
/// Method 2 explanation block.
void method2();

// Try to group methods of the same category, accessors, modifiers,␣
→˓utilities...

/// Getter explanation block.
something& get_something();

(continues on next page)

84 Chapter 14. Code Style Guide

srsRAN Project Documentation

(continued from previous page)

const something& get_something() const; // Feel free to provide two␣
→˓identical explanation blocks or declare

// both methods in a row, no need␣
→˓of newline here.

/// Getter explanation block.
another_thing& get_anotherthing(); // Here we separated the const and␣

→˓non const method declarations.
// Please be consistent per class␣

→˓basis.

/// Getter explanation block.
const another_thing& get_anotherthing() const;

// No need to add documentation for overridden interface methods, as they␣
→˓are already documented in the interface,
// we don't want to keep two copies of documentation blocks since they can␣

→˓easily diverge creating maintenance issues.
void interface_method1() override;
// Remember to add a newline between methods.
void interface_method2() override;

/// Enum description block.
// Define the enum near the site where it is going to be used to improve␣

→˓locality when reading the interface.
enum class my_enum {

enumerator1,
enumerator2

};

/// Method using above enum description block.
void method_uses_enum(my_enum e); // my_enum is declared above - easy to␣

→˓find.

protected: // After the public method section is done, declare the rest if␣
→˓applicable (protected, private).
// The audience here has changed to class developers, not public␣

→˓interface users anymore, we avoid polluting the public
// interface with implementation details
/// Protected method explanation block.
void prot_method();

private: // Private method section.
// This will be only read by users who need to understand implementation␣

→˓details. Keep away of public interface.
/// Private method explanation block.
void private_method();

protected: // Declare member variables at the end. Keep them separated from␣

(continues on next page)

14.5. Recommendations 85

srsRAN Project Documentation

(continued from previous page)

→˓methods.
/// Protected member variable.
unsigned protected_member_var;

private: // Last, declare private member variables.
// Variable names should be descriptive, so most of the times there is no␣

→˓need to document them.
unsigned memb_var_1;
void* memb_var_2;
/// Protects access to memb_var_2.
// In the case of a mutex it helps to add a short explanation of what is␣

→˓protecting...
mutable std::mutex m;

};

14.6 Self Generating Documentation

The srsRAN Project repository uses Doxygen to generate API documentation directly from the anno-
tated C++ source files. In order to contribute to the API documentation with an homogeneous style, the
following sections provide some general guidelines focusing on the most common code elements. Please
refer to the Doxygen Documentation for a complete overview of the Doxygen commands and features.

14.6.1 General Aspects

The documentation must be written in English, with American English spelling as given by the main entry
of The Merriam-Webster Dictionary. For all editorial matters (e.g., acronyms, plurals, capitalization,
equations), the suggested reference is the IEEE Editorial Style Manual for Authors , especially Section E
thereof.

All code entities are documented with a comment block just before the declaration of the entity. Placing
the documentation block on the same line as the code element is not allowed, even for short, one-line
comments. As mentioned here, all lines of a documentation comment block start with a triple slash. Also,
the srsRAN Project documentation prefers the \command form of Doxygen commands (as opposed to
@command).

Generally, a documentation block consists of a brief description (ideally, not more than one line) that
starts with the command \brief and one or more paragraphs separated by empty lines. When no de-
tailed description is provided, the \brief command in the brief description can be omitted. The brief
descriptions should go directly to the point, without expressions like “The myclass class provides/ spec-
ifies. . . ” (more on this below).

/// \brief Brief description of the code element.
///
/// Detailed description starts here. This can span several lines, randomly
/// filled in this example. Lorem ipsum dolor sit amet consectetur adipiscing
/// elit lacinia maecenas, hendrerit luctus libero vivamus elementum feugiat
/// torquent accumsan eleifend, diam orci aptent tincidunt a iaculis sed nisi.
///

(continues on next page)

86 Chapter 14. Code Style Guide

https://www.doxygen.nl/manual/
https://www.merriam-webster.com/
http://journals.ieeeauthorcenter.ieee.org/wp-content/uploads/sites/7/IEEE-Editorial-Style-Manual-for-Authors.pdf

srsRAN Project Documentation

(continued from previous page)

/// More detailed description. Paragraphs are separated by empty lines. Curae
/// arcu tempor urna convallis pulvinar conubia rutrum auctor, rhoncus nam
/// faucibus montes velit non molestie, nostra proin metus senectus sem tempus
/// tincidunt.
class example1;

/// Brief and only description of the code element.
class example2;

All code entities should be documented when declared. It is not required (actually, it is discouraged)
to repeat the documentation block when defining the code entity. In particular, virtual methods are only
documented when declaring the interface/base class and the documentation is not repeated when defining
the implementation.

Other general recommendations are as follows

• When referencing technical specifications or similar documents, only reference specific sections
and tables, since they do not change between releases, and avoid using page numbers. Consider
including extracts of the document if they provide clarification.

/// The class implements TS38.211 Section 4.2.1.

• Look for examples inside the code about the spelling of acronyms and references. For instance,
the recommended forms are TS38.211 (note the absence of space between TS and the number) or
DM-RS.

• Whenever possible, use rigorous mathematical notation for formulas, equations and related mat-
ters. For instance, (0, 1) denotes the open interval between 0 and 1 (that is, all real numbers 𝑥
such that 0 < 𝑥 < 1), while [0, 1] stands for the closed interval, with both endpoints included.
Half-open intervals, e.g., [0, 1) or (0, 1], are also possible. Discrete sets are written in enumerated
notation (e.g., {1, 4, 23}), with possible ellipsis when the meaning is obvious (e.g., {1, ..., 10}
for the first ten natural numbers, or {1, 1.2, 1.4, ..., 2.4} for all numbers between 1 and 2.4 with
increments of 0.2).

• Wrap code examples between \code and \endcode commands.

/// \code
class example_class {
int useless_field;
};

/// \endcode

• Use the \c command or the <tt>...</tt> tags for short inline bits of code, e.g. \c
variable_name or <tt> variable_name = 5 </tt.

• Start a paragraph with \note, \warning or \remark if you want to put extra emphasis (with the
obvious meaning) on it.

/// \warning An exception will be thrown if the input sequences are empty.

14.6. Self Generating Documentation 87

srsRAN Project Documentation

14.6.2 Files

A description of the contents of a file can be provided just after the the copyright header. This is partic-
ularly recommended for source files of tests and applications. For files, the \brief command is always
required.

/*
*
* Copyright header...
*
*/

/// \file
/// \brief Unit test for LDPC encoder and decoder.
///
/// For all possible base graphs and lifting sizes, the test extracts from a
/// file a small set of messages and corresponding codeblocks. The messages␣
→˓are
/// fed to the encoder, whose output is compared to the codeblocks. Similarly,
/// the codeblocks are fed to the decoder and the resulting messages are
/// compared to the example ones.

14.6.3 Classes and Structures

Class and structure documentation should provide enough information about what it represents and how
an instantiation of the class should be used. In the brief description, do not write expressions like “The
class/structure represents/defines” but provide directly more meaningful information. Use the \brief
command when the brief description is followed by a detailed one (optional if the documentation is
limited to the brief description).

It is a good practice to explicitly describe edge cases, side effects and less evident aspects of the class
(see last example).

/// LDPC rate dematcher interface.
class ldpc_rate_dematcher;

/// Decoder configuration.
struct configuration;

/// \brief PHY–FAPI bidirectional adaptor interface.
///
/// This adaptor is a collection of interfaces to translate FAPI messages into
/// their PHY layer counterpart and vice versa.
///
/// \note All implementations of this public interface must hold the ownership
/// of all its internal components.
class phy_fapi_adaptor;

88 Chapter 14. Code Style Guide

srsRAN Project Documentation

14.6.4 Class Methods and Free Functions

Methods and functions correspond to actions. As such, the brief description typically starts with a verb
(in the third singular person).

/// \brief Finds the smallest prime number greater than \c n.
unsigned prime_greater_than(unsigned n);

The free function in the example above is very simple, with an input and an output that are clear at
first sight. For more complex cases, prefer providing more information by means of the \param and
\return commands. Argument description should follow the same guidelines as general variables (see
next section).

Also, similarly to what explained for class and structures, edge cases and unpredictable behaviors should
be pointed out.

/// \brief Decodes a codeblock.
///
/// By passing a CRC calculator, the CRC is verified after each iteration␣
→˓allowing,
/// when successful, an early stop of the decoding process.
///
/// \param[out] output Reconstructed message of information bits.
/// \param[in] input Log-likelihood ratios of the codeblock to be decoded.
/// \param[in] crc Pointer to a CRC calculator for early stopping. Set
/// to \c nullptr for disabling early stopping.
/// \param[in] cfg Decoder configuration.
/// \return If the decoding is successful, returns the number of LDPC␣
→˓iterations
/// needed by the decoder. Otherwise, no value is returned.
/// \note A codeblock of all zero-valued log-likelihood ratios will␣
→˓automatically
/// return an empty value (i.e., failed CRC) and set all the output bits to␣
→˓one.
virtual optional<unsigned> decode(bit_buffer& output,

span<const log_likelihood_ratio> input,
crc_calculator* crc,
const configuration& cfg) = 0;

14.6.5 Class Data Members, Objects, Variables

Objects and class data members, both variable and constant, static or not, are treated as if they were
the concept they represent. As such, their brief description should not show terms like “represents”,
“indicates”, “denotes” or similar. Also, there is no need to repeat the type of the object, since Doxygen
repeats the declaration of the object together with its description. Although not common, documentation
of this type of entities may also require one or more paragraphs of detailed description. Some good
documentation examples are reported below.

/// Maximum number of iterations.
unsigned max_iterations = 6;

(continues on next page)

14.6. Self Generating Documentation 89

srsRAN Project Documentation

(continued from previous page)

/// New data flag (\c true if first HARQ transmission).
bool new_data = true;

/// \brief LDPC decoding statistics.
///
/// Provides access to LDPC decoding statistics such as the number of decoded
/// codeblocks (via <tt>ldpc_stats->get_nof_observations()</tt>) or the␣
→˓average
/// number of iterations for correctly decoded codeblocks (via
/// <tt>ldpc_stats->get_mean()</tt>).
sample_statistics<unsigned> ldpc_decoder_stats = {};

14.7 Commit Formatting

When committing code to the srsRAN Project codebase it is important that commit messages are clear
and succinct. This means having clear guidelines for how commits should be structured, both in the title
and body of the commit messages.

The preferred commit message style is as follows:

component: brief change description

Here, component refers to the section of the codebase being modified by the commit. Some examples of
this could be:

• mac_test, equalizer - changes are limited to a specific function/class

• phy, mac, rlc, etc - multiple changes across a specific layer

• cmake - changes to the cmake file

• all - a commit modifies something across the whole codebase

• misc - a miscellaneous change

Multiple components can be used if a commit touches two or more components. Simply separate the
components with a comma. For example:

rlc, mac: some commit message

The brief change description should be just that, brief. This means no more than 50 characters, including
the component(s). This ensures that the commit message will be displayed properly with no cuts. If you
need to create a commit message with more information, the body of the commit message may be used.
To do this, separate the heading from the body with a line break in your editor. For example:

component: brief commit outline less than 50 char

Body of commit message giving more detail about the commit. This should
only be used when further explanation is needed. This can span multiple
lines if necessary, but keep it as succinct as possible.

Note that all words in the subject line are lower case and there is no trailing period.

90 Chapter 14. Code Style Guide

srsRAN Project Documentation

To summarize, here are a few brief points to follow when committing to the srsRAN codebase:

• Each commit should have a component and a brief outline

• Commit subject lines should be limited to 50 characters in total

• The body of a commit should be separated by a line break

• Keep all text as succinct as possible

• No upper case letters or trailing period in subject line

If you would like more information on writing “good” commits, this guide is a useful resource.

14.7. Commit Formatting 91

https://cbea.ms/git-commit/

CHAPTER

FIFTEEN

TESTING POLICY

This section of our knowledge base outlines our comprehensive testing strategy, which adheres to the
Shift-left development approach. Unlike the traditional Waterfall model, where testing occurs after cod-
ing, our strategy emphasizes testing at the earliest possible stages of development. This proactive ap-
proach ensures that the development team considers testing from the project’s inception.

Throughout the development and validation stages, we employ various types of tests to ensure the ro-
bustness and reliability of our software:

15.1 Unit Tests

Unit tests are the foundational layer of our testing strategy. They scrutinize software behavior at a granular
level, examining individual components in isolation. We prioritize unit testing because it is faster, more
straightforward, and cost-effective compared to other types of tests. Our development team writes unit
tests during development. In most cases, new features in the code and their associated unit tests are in the
same Pull Request, even in the same commit. In order to merge a Pull Request into the main development
branch, all unit tests (old and new) must success.

Key aspects of our Unit Testing approach:

• Focus on requirements and behavior:

Our unit tests primarily assess whether the software meets its specified requirements
and behaves correctly, instead of internal design validation. Most of our unit tests are
designed as “sociable unit tests,” which means they remain agnostic of implementation
details and solely depend on interfaces. This approach allows us to refactor code with-
out affecting the tests and minimizes test instability. However, we also maintain some
traditional unit tests for legacy components.

• Testing happy, bad and edge Paths:

Our unit tests include test cases that explore various scenarios, including corner cases,
in addition to testing the expected behavior. Besides that, We encourage testing not only
the “happy path” but also adverse and error-prone paths (bad paths and death paths).

• AAA Pattern (Arrange-Act-Assert):

Whenever possible, our unit tests adhere to the AAA pattern for improved readability
and maintainability.

• Multiple Small Tests vs. Large Test Cases:

92

https://en.wikipedia.org/wiki/Shift-left_testing
https://en.wikipedia.org/wiki/Waterfall_model

srsRAN Project Documentation

We prefer multiple small unit tests over large test cases with multiple assertions. This
approach enhances test debugging and comprehension.

• Mandatory Test Additions:

Whenever developers introduce new features or bug fixes, they are required to create
corresponding unit tests. We enforce this through code reviews and code coverage.

• Component Labeling:

We label unit tests by component, making it easy to assess testing coverage for each
software component.

We mainly use Google Test for unit and integration tests, although we have some tests written in pure
C++ without the help of a testing framework

15.2 Integration and Component Tests

Integration tests encompass a few sub-components or complete ORAN items, verifying input-output
relationships as black-box tests. These tests play a crucial role in the initial development stages of
(sub)components, serving as skeleton tests to validate general scenarios.

15.3 End-to-End (E2E) Tests

Given the complexity of our ecosystem, we still need E2E and system tests to evaluate the behavior and
integration of our CU/DU solutions with real and simulated UEs and 5G cores. These tests are primarily
managed by the testing team and follow two distinct approaches:

• Tests without Hardware:

Using ZMQ and simulators, we have developed a test suite encompassing basic sce-
narios such as attaches, reattaches, and various types of traffic. These tests are easily
executable and do not require hardware devices, making them suitable for developers
to assess the software’s behavior after major changes. They run nightly and can be
triggered inside Pull Requests.

• Tests with Hardware:

For real-world scenarios, we employ commercial (COTS) UE devices and/or RUs to
trigger complex tests. These tests evaluate behavior, performance, and integration with
external components. They run nightly and weekly and provide valuable metrics and
Key Performance Indicators (KPIs).

To facilitate these tests, we’ve developed an in-house E2E testing framework, containerized for deploy-
ment flexibility, ensuring testing replicates production environments. Additionally, we utilize testing
solutions from VIAVI to validate our product.

While our E2E test suite does not grow with every code change like unit tests, we continually add new
tests when significant features are introduced or when exploratory testing identifies noteworthy scenarios
to automate.

15.2. Integration and Component Tests 93

https://github.com/google/googletest
https://www.viavisolutions.com/

srsRAN Project Documentation

15.4 Exploratory Tests

Exploratory testing holds particular importance in our strategy due to the complexity of the real-world
scenarios we aim to support. Whenever an issue or unexpected behavior is identified, we endeavor to
create a test at the lowest possible level, ideally as a unit test.

94 Chapter 15. Testing Policy

CHAPTER

SIXTEEN

O-RAN GNB OVERVIEW

This document aims to provide a basic understanding of O-RAN compliant gNBs, and how we have
implemented this with srsGNB. A further deep dive can be found in our Developer Guide.

16.1 Introduction

5G Radio Access Networks (RANs) introduce the gNodeB (gNB), the next evolution of the eNodeB
found in LTE networks. With Release 15, 3GPP introduced a flexible architecture to the 5G RAN. This
splits the gNB into the Centralized Unit (CU), the Distributed Unit (DU) and the Radio Unit (RU).

This new architecture brings multiple new interfaces: the CU and DU communicate over the F1 interface,
gNBs communicate with each other over the Xn interface and the RAN and the Core communicate over
NG interface. Within this new release there are 8 functional splits, which dictate how and where the
RAN is split in the CU, DU and RU.

The Open-RAN (O-RAN) Alliance defined option 7.2x, which is a low-level split for Ultra Reliable Low
Latency Communication (URLLC) and near-edge deployments. O-RAN standards also introduce the
non-Real Time and near-Real Time RAN Intelligence Controller, or nonRT-RIC and nearRT-RIC, to the
5G RAN. This splits the gNB further, into the DU-low, DU-high, CU-CP and CU-UP

The aim of O-RAN is to promote virtualized and disaggregated RANs, with a highly interoperable,
multi-vendor approach.

16.2 Split 7.2x Architecture

As outlined in the introduction, Release 15 introduces the “Functional Split” to the 5G gNB. This sep-
arates the gNB into the CU and DU. A simplified outline of this change is illustrated in the following
figure.

O-RAN standards further define split 7.2x. This informs how the CU and DU are separated, and which
layers of the stack are contained in each. Before looking into Split 7.2x further, it is worth examining the
CU/ DU split at a higher level.

At a basic level the CU and DU layer functions are split as follows:

95

srsRAN Project Documentation

Fig. 1: Simplified overview of move from 4G architecture to 5G architecture with functional split.

Table 1: CU/ DU Split

CU DU
RRC RLC
SDAP MAC
PDCP PHY

The above shows which layers are located in the CU and DU. This is shown graphically below.

Fig. 2: Simplified overview of O-RAN gNB architecture.

This is an overly simplified view of how the CU and DU might look. In practice, the CU and DU are
split further, with multiple interfaces between them.

We will now look specifically at Split 7.2x. In this, the CU is split into the control plane and the user
plane, resulting in two elements - the CU-CP and CU-UP. The ORAN-DU is split into the DU-high and
DU-low. Not only are the CU and DU split, but the layers they contain are also separated to allow for
further control and acceleration of certain procedures - e.g. PDCP and PHY.

The further separation of the RAN components means more interfaces must be introduced to facilitate
communication between them. These interfaces are as follows:

96 Chapter 16. O-RAN gNB Overview

srsRAN Project Documentation

• The CU-CP, CU-UP and DU-high will be connected to the nearRT-RIC via the E2 interface.

• Backhaul from the CU-UP/CP will be done via the NG and XN and interfaces.

• The CU elements will communicate via the E1 interface

• The CU-UP and CU-CP will communicate with the DU-high via the F1-u and F1-c interfaces
respectively.

• The DU-high and DU-low communicate via a FAPI+ interface.

The following figure shows the complete architecture of an O-RAN compliant gNB, implementing Split
7.2x.

Fig. 3: O-RAN compliant gNB architecture, showing all main components and interfaces. The gNB-
specific components are contained in the blue area.

The gNB is shown here in the blue shaded area. The CU-UP and CU-CP are clearly illustrated, as is the
split between the high and low DU, and the interfaces between them. This diagram also shows how the
nearRT-RIC is connected to the gNB and the nonRT-RIC. The RU is shown here in two versions, the RU
(Split 7.2x) and a non-ORAN RU (Split 8). Split 7.2 moves to low PHY out to the RU , while Split 8
keeps it within the DU-low. The frontHaul interface used here is typically eCPRI.

To be O-RAN compliant a gNB must implement the CU and DU as shown above, while also having
support for the interfaces needed for the nearRT-RIC, nonRT-RIC, and the RU and RU.

16.2. Split 7.2x Architecture 97

srsRAN Project Documentation

16.3 srsRAN Project gNB

The srsRAN Project gNB is fully O-RAN compliant. While users will still be able to stand up a mono-
lithic gNodeB on a single machine in minutes, our new gNB will also eventually enable users to distribute
the RAN functionality across the machines and geography of their choice. All of the elements in the blue
shaded area above are implemented in the srsRAN Project gNB, along with all of the interfaces. This
allows users to easily use third party RICs, PHY solutions and other O-RAN compliant hardware and
applications with the gNB.

16.4 Further Reading

For further information and reading, you can take a look at the following resources:

• ShareTechnote: Open RAN

• O-RAN SC Docs

• O-RAN Alliance website

98 Chapter 16. O-RAN gNB Overview

https://www.sharetechnote.com/html/OpenRAN/OR_WhatIsIt.html
https://docs.o-ran-sc.org/en/latest/index.html
https://www.o-ran.org/

CHAPTER

SEVENTEEN

O-RAN GNB COMPONENTS

As outlined in the O-RAN gNB Overview the 5G NR gNB introduces a flexible architecture. Splitting
the gNB into the CU, DU and RU.

This section of our knowledge base aims to go through these components in further detail. Outlining the
main functions of each, their layers and the interfaces between them.

17.1 Centralized Unit (CU)

The CU has the following architecture:

In the CU the user plane and control plane are split into two new submodules: the CU-CP and the CU-UP.

The key points are:

• The user plane contains the SDAP and PDCP layers.

• The control plane contains the RRC and PDCP layers.

• CU-UP and CU-CP are interconnected through the E1 interface; this interface is used for control
signalling.

• CU-UP is connected to the DU(s) through the F1-U interface.

• CU-CP is connected to the DU(s) through the F1-C interface.

99

srsRAN Project Documentation

17.2 Distributed Unit (DU)

The DU has the following architecture:

The DU is composed of L1 and L2 functional blocks which communicate using the FAPI+ interface.

There are two approaches to how the low-PHY is implemented, it can either be in the DU-low or the RU.
If split 8 is being used then the low-PHY will be located in the DU-low, if split 7.2x is being used it will
be located in the RU.

17.2.1 DU-high

The DU-high contains L2 functional blocks, and communicates with the nearRT-RIC and CUs.

The main interfaces are:

• E2 Handler

– Terminates the E2 interface from the near-RT RIC. Handles the following tasks:

– E2/SCTP interface termination

– E2AP protocol message send and receive

– Configure KPI measurements in L2 and L1 modules

– Metrics reporting over E2

100 Chapter 17. O-RAN gNB Components

srsRAN Project Documentation

– Relays actions to other modules based on E2 messages

– Relaying response over E2

• F1 Control plane

– Performs tasks related to cell management, UE management and semi-static air interface
resource management at the cell level.

• F1 User plane

– Perform tasks related to tunnel management, DL and UL data transmission and DL flow
control (RLC feedback).

The main components are:

• RLC

– Transfers the control and data messages between MAC layer and CU.

• MAC

– Uses the services of the PHY to send and receive, and multiplexing and de-multiplexing of
data on the various logical channels.

– Responsible for scheduling UL and DL resources for the cell and UE procedures.

– Interfaces with the DU-low and handles L1 messaging.

17.2.2 DU-low

The DU-low executes the following tasks within L1 functional blocks:

• L2 FAPI processing: handle L2 interface request/response FAPI messages from the DU-high.

• Timing events processing: Handle timing related operations and triggers scheduled periodic
tasks.

• FEC acceleration processing: handle FEC related operations and pass the FEC requests to hard-
ware and invokes callback functions when the hardware finishes.

• FrontHaul processing: handle all of the front haul related TX/RX operations.

• UL Task scheduling

• DL Task scheduling

• PUSCH, PUCCH, PRACH processing (UL)

• PDSCH, PDCCH, PBCH processing (DL)

The high-PHY in particular is responsible for:

• UL: PUSCH, PUCCH, PRACH

• DL: PDSCH, PDCCH, PBCH

• UL/DL reference signals (DMRS, PTRS, SRS, PSS, SSS)

• Fronthaul handler

• FAPI handler

• Hardware accelerator handler

17.2. Distributed Unit (DU) 101

srsRAN Project Documentation

• Timing synchronization

• L1 Task control module

102 Chapter 17. O-RAN gNB Components

CHAPTER

EIGHTEEN

GNB INTERFACES

As outlined in the O-RAN gNB Overview the 5G NR gNB introduces a flexible architecture. Splitting
the gNB and introducing multiple new interfaces.

This section of our knowledge base aims to go through these interfaces in further detail. Outlining the
components they connect, the types of messages they carry and their purpose.

18.1 E1

The E1 interface connects the CU Control Plane (CU-CP) to the CU User Plane (CU-UP). The application
protocol (E1AP) is implemented on top of SCTP using ASN1 messages. Its main function is the bearer
context management.

18.2 E2

The E2 interface connects the near-RT RIC to an E2 node (E2-du, E2-cp, E2-up). The application pro-
tocol (E2AP) is implemented on top of SCTP using ASN1 messages (similar to E1 interface defined by
3GPP). Its main functions are:

• Provide Near-RT RIC services:

– Report

– Insert

– Control

– Policy

Support functions include:

• Interface management

• RIC service updates

The main functions outlined above include the following procedures:

• Report: Subscription request to the E2 node with information to configure how reports should be
sent by the node back to the RIC.

103

srsRAN Project Documentation

• Insert: Subscription request to the E2 node with information to configure an insert message which
will be used to suspend an ongoing procedure in the node. The RIC then decides how to deal with
the suspended procedure (override, cancel, . . .).

• Control: Control message to the E2 node to instantiate a procedure or resume a previously sus-
pended one.

• Policy: RIC requests a node to execute a specific policy during the normal functioning of the E2
node.

The E2 service model defines the functions in the E2 node which may be controlled by the RIC. For
each exposed function in the service model, the RIC may monitor, suspend, stop, override or control via
different policies the behavior of the E2 node.

The current specification (as of March 2021 specs) defines two service models which are specific imple-
mentations of the above points:

1. Network Interface (NI): exposure of network interfaces and modification of the messages.

2. Key Performance Measurement (KPM): Performance monitoring of set metrics within the RAN.

The KPM service model requires the following metrics to be exposed:

• CU-UP: PDCP UL/DL bytes, QCI.

• DU: DL/UL PRB usage.

• CU-CP: number of active UEs.

18.3 F1

The F1 interface connects the CU to the DU. Its is split into two interfaces. The F1-C connects the CU-CP
to the DU, while the F1-U conntects the the CU-UP to the DU.

18.3.1 F1-C

The F1-C interface connects the CU-CP to the DU. The application protocol (F1AP) is implemented on
top of SCTP using ASN1 messages. Its main functions are:

• UE context management

• RRC message transfer

• Warning message transmission

• System information

• Paging

104 Chapter 18. gNB Interfaces

srsRAN Project Documentation

18.3.2 F1-U

18.4 FAPI

18.5 NG

The NG interface connects the CU to the Core (AMF). Its is split into two interfaces. The NG-C connects
the CU-CP to the AMF, while the NG-U conntects the the CU-UP to the AMF.

18.5.1 NG-C

The NG-C interface connects the CU-CP to the AMF. The application protocol (NGAP) is implemented
on top of SCTP using ASN1 messages. Its main functions are:

• PDU session management

• UE context management

• UE mobility management

• Paging

• Transport of NAS messages

• Configuration transfer

• Warning message transmission

• NRPPa transport

• Trace

• Location reporting

• UE TNLA binding

• UE radio capability management

• Data usage reporting

18.5.2 NG-U

18.6 O1

The O1 interface is aligned to the 3GPP specifications for RAN element management. It connects the
multiple elements of the gNB to the Service Management and Orchestration (SMO) platform. The fol-
lowing Fault, Configuration, Accounting, Performance and Security (FCAPS) functions are supported
through the O1 interface:

• Performance management (PM)

• Configuration management (CM)

• Fault management (FM)

• File management

18.4. FAPI 105

srsRAN Project Documentation

• Communication surveillance (heartbeat)

• Tracing

• Physical network function (PNF) discovery

• PNF software management

O1 provisioning operations use NETCONF for communication using YANG files for data exchange,
while for CM notifications a RESTFUL HTTP-based solution is used. O1 is the communication protocol
to support OAM.

18.7 Open FrontHaul

The architecture of a gNB with CU, DU and RUs is shown in the following figure, using split 7.2x. Here,
the term Lower Layer Split (LSS) replaces FrontHaul. LLS-C and LLS-U provide the control and user
planes over the LLS interface respectively.

The FrontHaul interface is divided into two main planes:

• CUS plane: control, user and synchronization

• M plane: management

The CUS plane of the FrontHaul interface uses different data flows to exchange data between the DU and
the RU. They are:

1. User plane:

• 1a: flow of IQ data in FFT frequency domain on DL

• 1b: flow of IQ data in FFT frequency domain on UL

• 1c: flow of PRACH IQ data in FFT frequency domain

106 Chapter 18. gNB Interfaces

srsRAN Project Documentation

2. Control plane:

• 2a: Scheduling commands (DL and UL) & beamforming commands

• 2b: LAA listen-before-talk (LBT) configuration commands and requests

• 2c: LAA LBT status and response messages

3. Synchronization plane:

• S: timing and synchronization data

The Management plane, not included in the previous figure, uses a similar interface to O1 to set up,
configure and perform maintenance tasks on the FrontHaul interface.

The following tables show the protocol architecture for each plane:

Control Plane User Plane Sync Plane
eCPRI / ROE eCPRI / ROE
UDP (optional) UDP (optional)
IP (optional) IP (optional) PTP SyncE
Eth L2 + VLAN Eth L2 + VLAN ETH L2
ETH L1 ETH L1 ETH L1

We can see that for user and control planes we can choose, for transport purposes, between eCPRI or
IEEE 1914.3 (Radio over Ethernet).

18.7. Open FrontHaul 107

CHAPTER

NINETEEN

COTS UES

This section of our knowledge base aims to list all COTS UEs known to be working with the srsRAN
Project gNB including tested bands and configurations.

19.1 Tested COTS UEs

This is a list of COTS UEs that have been confirmed to be working with the srsRAN Project gNB tested
by SRS.

108

srsRAN Project Documentation

Table 1: SRS tested COTS UEs

Make Model Code-
name

Base-
band

FDD TDD Config-
uration

SDR Notes

Google Pixel 6 GB7N6 n71 - 10
MHz IMSI

00101
gNB
PLMN:
00101

USRP
B2103 Test

SIM:
Sysmo-
com
SJS12,
SJA25

(must
disable
service
1246)

Requires
disabled
NR_TIMER_WAIT_IMS_REGISTRATION
or SUP-
PORT_IMS_NR_REGISTRATION_TIMER
in
hidden
IMS
menu by
dialing
##0702#*#*

Mo-
torola

Edge 30
Pro

XT2201-
1

SM8450
Snap-
dragon
8 Gen 1

n3 - 5,
10, 20
MHz

n78 -
10, 20,
40 MHz

USRP
B200mini1,
GPSDO

Test
SIM:
Sysmo-
com
SJS1Page 113, 2

OnePlus Nord 5G A2003 SM7250
Snap-
dragon
765G

n3 - 5,
10, 20
MHz

n78 -
20, 40,
80, 100
MHz

IMSI
00101
gNB
PLMN
90170

B210Page 113, 3,
Leo
Bodnar
GPSDO
N3104,
External
Clock

Seems
to not
like Test
PLMN
Has
been
tested in
the
shield-
ing box
and on a
desk

continues on next page

19.1. Tested COTS UEs 109

srsRAN Project Documentation

Table 1 – continued from previous page
Make Model Code-

name
Base-
band

FDD TDD Config-
uration

SDR Notes

OnePlus 8T KB2003 SM8250
Snap-
dragon
865 5G

n78 - 20
MHz IMSI

00101
gNB
PLMN
90170

B210,
Leo
Bodnar
GPSDO

Requires
use of
the
“roam-
ing
hack”

Requires
GPSDO
to keep
stable
connec-
tion.

OnePlus 9 Pro LE2123 Snap-
dragon
888
Octa-
core

n3 - 10
MHz

n78 - 20
MHz IMSI

00101
gNB
PLMN:
00101,
99970,
46007

Test
SIM:
Sysmo-
com
SJA2Page 113, 5

(must
disable
service
124Page 113, 6)

Requires
root7

NSG
must
force
5G-NR
only8

Quectel RM500q Snap-
dragon
X55

continues on next page

110 Chapter 19. COTS UEs

srsRAN Project Documentation

Table 1 – continued from previous page
Make Model Code-

name
Base-
band

FDD TDD Config-
uration

SDR Notes

Simcom SIM8262E-
M2

Snap-
dragon
X62

n78 - 20
MHz Test

SIM:
works
with test
SIM

Sysmocom
IMSI
doesn’t
work

Telit FN990A28 Snap-
dragon
X62

n7 - 5,
10, 20
MHz
n71 - 5,
10, 20
MHz

n78 - 20,
30 MHz IMSI

00101,
99970
gNB
PLMN:
00101,
99970

USRP
B210Page 113, 3Test

SIM:
Sysmo-
com
SJS1Page 113, 2,
SJA2Page 113, 5

(must
disable
service
124Page 113, 6)
For
Symo-
com
Break-
out
Board
requires
SIMIN
to be
“Active
High”
MS op-
eration
mode:
normal
or
type_approval
(both
work)

continues on next page

19.1. Tested COTS UEs 111

srsRAN Project Documentation

Table 1 – continued from previous page
Make Model Code-

name
Base-
band

FDD TDD Config-
uration

SDR Notes

Xiaomi 11 Lite
5G NE

SM7325
Snap-
dragon
778G
5G

n3 - 10,
20 MHz

n78 - 20
MHz

gNB
PLMN:
00101

B210,
Leo
Bodnar
GPSDO

Test
SIM:
Sysmo-
com
SJA2Page 113, 5

Activate
hidden
SA
option
by
dialing
##726633#*#*

Xiaomi 12 SM8450
Snap-
dragon
8 Gen 1

n3 - 20
MHz

n78 - 20
MHz

gNB
PLMN:
00101

B210,
Leo
Bodnar
GPSDO

Test
SIM:
Sysmo-
com
SJA2Page 113, 5

Initially
unstable
connec-
tion,
fixed by
forcing
NR only
RAT
Activate
hidden
SA
option
by
dialing
##726633#*#*

continues on next page

112 Chapter 19. COTS UEs

srsRAN Project Documentation

Table 1 – continued from previous page
Make Model Code-

name
Base-
band

FDD TDD Config-
uration

SDR Notes

iPhone 13 Pro A15
Bionic

n78 - 30
MHz

gNB
PLMN:
00101

B210,
Leo
Bodnar
GPSDO

iPhones
require
IMS to
be
enable
UE to
stay
con-
nected.
An
Open5GS
and Ka-
mailio
IMS set
up can
be found
here.
SUPI
conceal-
ment is
required
to
attempt
an
attach,
this is
outlined
in this
post.

3 https://www.ettus.com/all-products/ub210-kit/
2 https://osmocom.org/projects/cellular-infrastructure/wiki/SysmoUSIM-SJS1
5 https://osmocom.org/projects/cellular-infrastructure/wiki/SysmoISIM-SJA2
6 https://docs.srsran.com/projects/4g/en/latest/app_notes/source/5g_sa_COTS/source/index.html?highlight=cots#g-sim
1 https://www.ettus.com/all-products/usrp-b200mini/
4 https://www.ettus.com/all-products/usrp-n310/
7 https://docs.srsran.com/projects/4g/en/latest/app_notes/source/5g_sa_COTS/source/index.html?highlight=cots#

rooting-cots-ue
8 https://docs.srsran.com/projects/4g/en/latest/app_notes/source/5g_sa_COTS/source/index.html?highlight=cots#

network-signal-guru

19.1. Tested COTS UEs 113

https://github.com/herlesupreeth/docker_open5gs/blob/master/sa-vonr-deploy.yaml
https://github.com/herlesupreeth/docker_open5gs/discussions/248#discussioncomment-7392233
https://github.com/herlesupreeth/docker_open5gs/discussions/248#discussioncomment-7392233
https://www.ettus.com/all-products/ub210-kit/
https://osmocom.org/projects/cellular-infrastructure/wiki/SysmoUSIM-SJS1
https://osmocom.org/projects/cellular-infrastructure/wiki/SysmoISIM-SJA2
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/5g_sa_COTS/source/index.html?highlight=cots#g-sim
https://www.ettus.com/all-products/usrp-b200mini/
https://www.ettus.com/all-products/usrp-n310/
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/5g_sa_COTS/source/index.html?highlight=cots#rooting-cots-ue
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/5g_sa_COTS/source/index.html?highlight=cots#rooting-cots-ue
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/5g_sa_COTS/source/index.html?highlight=cots#network-signal-guru
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/5g_sa_COTS/source/index.html?highlight=cots#network-signal-guru

srsRAN Project Documentation

19.2 User reported working UEs

This is a list of COTS UEs that have been reported to be working with the srsRAN Project gNB by users.

Table 2: User reported COTS UEs

Make Model Code-
name

Base-
band

FDD TDD Config-
uration

SDR Notes

OnePlus 8 IN2013
OnePlus Nord

N10
BE2029 Snap-

dragon
690

OnePlus Nord CE
5G

EB2103 Snap-
dragon
750G
5G

n3 n78 - 20
MHz

OnePlus 10 Pro SM8450
Snap-
dragon
8 Gen 1

n3 n78
- 100
MHz

USRP
X4109

Quectel RM510Q-
GL

Sierra EM9191 Snap-
dragon
X55

n78 - 40
MHz

Xiaomi Redmi
Note 10
5G

Me-
diatek
MT6833
Dimen-
sity
700

n28 N77 and
78 Activate

hidden
SA
option
by
dialing
##726633#*#*

ZTE MU5002/MU5001 SDX55+QCA6391
OnePlus Nord

CE 2
Lite 5G

n78 -
20 MHz
and 40
MHz

B210
Same
PLMN
for both
SIM and
RAN

OnePlus Nord
CE 3
Lite 5G

n78 -
20 MHz
and 40
MHz

B210
Same
PLMN
for both
SIM and
RAN

continues on next page

114 Chapter 19. COTS UEs

srsRAN Project Documentation

Table 2 – continued from previous page
Make Model Code-

name
Base-
band

FDD TDD Config-
uration

SDR Notes

Asus Zenfone
8

n78 -
20 MHz
and 40
MHz

B210
Same
PLMN
for both
SIM and
RAN

Cross-
call

Core Z5 n78 -
20MHz

Google Pixel 7
Pro

n78 - 40
MHz to
60 MHz

X310
SISO

19.3 UE Capability Messages

This is a list of PCAP messages containing COTS UE capability messages. Information on viewing
PCAP files can be found here

Table 3: UE Capability PCAP

Make Model UE Capability PCAP
Simcom SIM8262E-M2 pcap
Motorola Edge 30 Pro pcap
Google Pixel 6a pcap

19.4 References

9 https://www.ettus.com/all-products/usrp-x410/

19.3. UE Capability Messages 115

https://www.ettus.com/all-products/usrp-x410/

CHAPTER

TWENTY

SRSRAN GNB WITH SRSUE

20.1 Overview

srsRAN Project is a 5G CU/DU solution and does not include a UE application. However, srsRAN 4G
does include a prototype 5G UE (srsUE) which can be used for testing. This application note shows
how to create an end-to-end fully open-source 5G network with srsUE, the srsRAN Project gNodeB and
Open5GS 5G core network.

First, we show how to connect srsUE to the gNodeB over-the-air using USRPs. In the second part, we
outline how to use virtual radios based on ZeroMQ instead of SDR hardware. Virtual radios allow the
UE to be connected to the gNodeB over sockets. This approach can be very useful for development,
testing, debugging, CI/CD or for teaching and demonstrating.

20.2 Hardware and Software Overview

For this application note, the following hardware and software are used:

• PC with Ubuntu 22.04.1 LTS

• srsRAN Project

• srsRAN 4G (23.11 or later)

• Two Ettus Research USRP B210s (connected over USB3)

• Open5GS 5G Core

• ZeroMQ

Ideally the USRPs would be connected to a 10 MHz external reference clock or GPSDO, although this
is not a strict requirment. We recommend the Leo Bodnar GPSDO.

116

https://github.com/srsran/srsRAN_4G
https://github.com/srsran/srsRAN_project
https://github.com/srsran/srsRAN_4G
https://www.ettus.com/all-products/ub210-kit/
https://open5gs.org/
https://zeromq.org/
http://www.leobodnar.com/shop/index.php?main_page=product_info&cPath=107&products_id=234&zenid=5194baec39dbc91212ec4ac755a142b6

srsRAN Project Documentation

20.2.1 srsRAN 4G

If you have not already done so, install the latest version of srsRAN 4G and all of its dependencies. This
is outlined in the installation guide.

Please check our srsRAN 4G ZeroMQ Application Note for information on installing ZMQ and using it
with srsRAN 4G.

Limitations

The current srsUE implementation has a few feature limitations when running in 5G SA mode. The key
feature limitations are as follows:

• Limited to 15 kHz Sub-Carrier Spacing (SCS), which means only FDD bands can be used.

• Limited to 5, 10, 15 or 20 MHz Bandwidth (BW)

20.2.2 Open5GS

For this example, we are using Open5GS as the 5G Core.

Open5GS is a C-language Open Source implementation for 5G Core and EPC. The following links will
provide you with the information needed to download and set-up Open5GS so that it is ready to use with
srsRAN:

• GitHub

• Quickstart Guide

For the purpose of this application note, we will use a dockerized Open5GS version provided in srsRAN
Project at srsgnb/docker.

20.2.3 ZeroMQ

On Ubuntu, ZeroMQ development libraries can be installed with:

sudo apt-get install libzmq3-dev

Alternatively, ZeroMQ can also be built from source.

First, one needs to install libzmq:

git clone https://github.com/zeromq/libzmq.git
cd libzmq
./autogen.sh
./configure
make
sudo make install
sudo ldconfig

Second, install czmq:

20.2. Hardware and Software Overview 117

https://docs.srsran.com/projects/4g/en/latest/general/source/1_installation.html
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/zeromq/source/index.html
https://github.com/open5gs/open5gs
https://open5gs.org/open5gs/docs/guide/01-quickstart/

srsRAN Project Documentation

git clone https://github.com/zeromq/czmq.git
cd czmq
./autogen.sh
./configure
make
sudo make install
sudo ldconfig

Finally, you need to compile srsRAN Project and srsRAN 4G (assuming you have already installed all
the required dependencies). Note, if you have already built and installed srsRAN 4G and srsRAN Project
prior to installing ZMQ and other dependencies you will have to re-build both to ensure the ZMQ drivers
have been recognized correctly.

For srsRAN Project, the following commands can be used to download and build from source:

git clone https://github.com/srsran/srsRAN_Project.git
cd srsRAN_Project
mkdir build
cd build
cmake ../ -DENABLE_EXPORT=ON -DENABLE_ZEROMQ=ON
make -j`nproc`

ZeroMQ is disbaled by default, this is enabled when running cmake by including -DENABLE_EXPORT=ON
-DENABLE_ZEROMQ=ON.

Pay extra attention to the cmake console output. Make sure you read the following line:

...
-- FINDING ZEROMQ.
-- Checking for module 'ZeroMQ'
-- No package 'ZeroMQ' found
-- Found libZEROMQ: /usr/local/include, /usr/local/lib/libzmq.so
...

20.3 Over-the-air Setup

The following diagram presents the setup architecture:

118 Chapter 20. srsRAN gNB with srsUE

srsRAN Project Documentation

20.3.1 Configuration

You can find the srsRAN Project gNB configuration file for this example in the configs folder of the
srsRAN Project source files. You can also find it here:

• gNB FDD srsUE config

You can download the srsUE config here:

• srsUE

It is recommended you use these files to avoid errors while changing configs manually. Any configuration
files not included here do not require modification from the default settings. Details of the modifications
made are outlined in following sections.

gNB

The following changes need to be made to the gNB configuration file.

The gNB has to connect to AMF in the 5G core network, therefore we need to provide two IP addresses:

amf:
addr: 10.53.1.2 # The address of the AMF. Check Open5GS␣

→˓config -> amf -> ngap -> addr
bind_addr: 10.53.1.1 # A local IP that the gNB binds to for␣

→˓traffic from the AMF.

Next, we have to configure the RF front-end device:

ru_sdr:
device_driver: uhd # The RF driver name.
device_args: type=b200 # Optionally pass arguments to the␣

→˓selected RF driver.
clock: external # Specify the clock source used by the RF.
sync: external # Specify the sync source used by the RF.
srate: 23.04 # RF sample rate might need to be␣

→˓adjusted according to selected bandwidth.
tx_gain: 75 # Transmit gain of the RF might need to␣

→˓adjusted to the given situation.
rx_gain: 75 # Receive gain of the RF might need to␣

→˓adjusted to the given situation.

Finally, we configure the 5G cell parameters:

cell_cfg:
dl_arfcn: 368500 # ARFCN of the downlink carrier (center␣

→˓frequency).
band: 3 # The NR band.
channel_bandwidth_MHz: 20 # Bandwith in MHz. Number of PRBs will be␣

→˓automatically derived.
common_scs: 15 # Subcarrier spacing in kHz used for data.
plmn: "00101" # PLMN broadcasted by the gNB.
tac: 7 # Tracking area code (needs to match the␣

(continues on next page)

20.3. Over-the-air Setup 119

https://github.com/srsran/srsRAN_Project/tree/main/configs
https://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_rf_b210_fdd_srsUE.yml

srsRAN Project Documentation

(continued from previous page)

→˓core configuration).
pdcch:
common:

ss0_index: 0 # Set search space zero index to match␣
→˓srsUE capabilities

coreset0_index: 12 # Set search CORESET Zero index to match␣
→˓srsUE capabilities

dedicated:
ss2_type: common # Search Space type, has to be set to␣

→˓common
dci_format_0_1_and_1_1: false # Set correct DCI format (fallback)

prach:
prach_config_index: 1 # Sets PRACH config to match what is␣

→˓expected by srsUE

srsUE

The following changes need to be made to the UE configuration file to allow it to connect to the gNB in
SA mode.

First, the following parameters need to be changed under the [rf] options so that the B210 is configured
optimally:

[rf]
freq_offset = 0
tx_gain = 50
rx_gain = 40
srate = 23.04e6
nof_antennas = 1

device_name = uhd
device_args = clock=external
time_adv_nsamples = 300

The next set of changes need to be made to the [rat.eutra] options. The LTE carrier is disabled, to force
the UE to use a 5G NR carrier:

[rat.eutra]
dl_earfcn = 2850
nof_carriers = 0

Then, the [rat.nr] options need to be configured for 5G SA mode operation:

[rat.nr]
bands = 3
nof_carriers = 1
max_nof_prb = 106
nof_prb = 106

120 Chapter 20. srsRAN gNB with srsUE

srsRAN Project Documentation

The max_nof_prb and nof_prb parameters have to be adapted for the used bandwidth according to the
following table:

BW PRBs
5 25
10 52
15 79
20 106

Lastly, set the release and ue_category:

[rrc]
release = 15
ue_category = 4

Note that the following (default) USIM Credentials are used:

[usim]
mode = soft
algo = milenage
opc = 63BFA50EE6523365FF14C1F45F88737D
k = 00112233445566778899aabbccddeeff
imsi = 001010123456780
imei = 353490069873319

The APN is enabled with the following configuration:

[nas]
apn = srsapn
apn_protocol = ipv4

20.3.2 Running the Network

The following order should be used when running the network:

1. 5GC

2. gNB

3. UE

Open5GS Core

srsRAN Project provides a dockerized version of the Open5GS. It is a convenient and quick way to start
the core network. You can run it as follows:

cd ./srsRAN_Project/docker
docker compose up --build 5gc

Note that we have already configured Open5GS to operate correctly with srsRAN Project gNB. Moreover,
the UE database is populated with the credentials used by our srsUE.

20.3. Over-the-air Setup 121

srsRAN Project Documentation

gNB

We run gNB directly from the build folder (the config file is also located there) with the following com-
mand:

sudo ./gnb -c ./gnb.yaml

The console output should be similar to:

--== srsRAN gNB (commit 374200dee) ==--

Connecting to AMF on 10.53.1.2:38412
[INFO] [UHD] linux; GNU C++ version 9.2.1 20200304; Boost_107100; UHD_3.15.0.
→˓0-2build5
[INFO] [LOGGING] Fastpath logging disabled at runtime.
Making USRP object with args 'type=b200'
[INFO] [B200] Detected Device: B210
[INFO] [B200] Operating over USB 3.
[INFO] [B200] Initialize CODEC control...
[INFO] [B200] Initialize Radio control...
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Setting master clock rate selection to 'automatic'.
[INFO] [B200] Asking for clock rate 16.000000 MHz...
[INFO] [B200] Actually got clock rate 16.000000 MHz.
[INFO] [MULTI_USRP] Setting master clock rate selection to 'manual'.
[INFO] [B200] Asking for clock rate 23.040000 MHz...
[INFO] [B200] Actually got clock rate 23.040000 MHz.
Cell pci=1, bw=20 MHz, dl_arfcn=368500 (n3), dl_freq=1842.5 MHz, dl_ssb_
→˓arfcn=368410, ul_freq=1747.5 MHz

The Connecting to AMF on 10.53.1.2:38412 message indicates that gNB initiated a connection
to the core. If the connection attempt is successful, the following (or similar) will be displayed on the
Open5GS console:

Open5GS | 04/17 10:00:43.567: [amf] INFO: gNB-N2 accepted[10.53.1.1]:41578␣
→˓in ng-path module (../src/amf/ngap-sctp.c:113)
Open5GS | 04/17 10:00:43.567: [amf] INFO: gNB-N2 accepted[10.53.1.1] in␣
→˓master_sm module (../src/amf/amf-sm.c:706)
Open5GS | 04/17 10:00:43.567: [amf] INFO: [Added] Number of gNBs is now 1␣
→˓(../src/amf/context.c:1034)
Open5GS | 04/17 10:00:43.567: [amf] INFO: gNB-N2[10.53.1.1] max_num_of_
→˓ostreams : 30 (../src/amf/amf-sm.c:745)

122 Chapter 20. srsRAN gNB with srsUE

srsRAN Project Documentation

srsUE

Finally, we start srsUE. This is also done directly from within the build folder, with the config file in the
same location:

sudo ./srsue ue_rf.conf

If srsUE connects successfully to the network, the following (or similar) should be displayed on the
console:

Reading configuration file ./ue_rf.conf...

Built in Release mode using commit eea87b1d8 on branch master.

Opening 1 channels in RF device=default with args=clock=external
Supported RF device list: UHD zmq file
Trying to open RF device 'UHD'
[INFO] [UHD] linux; GNU C++ version 9.2.1 20200304; Boost_107100; UHD_3.15.0.
→˓0-2build5
[INFO] [LOGGING] Fastpath logging disabled at runtime.
[INFO] [MPMD FIND] Found MPM devices, but none are reachable for a UHD␣
→˓session. Specify find_all to find all devices.
Opening USRP channels=1, args: type=b200,master_clock_rate=23.04e6
[INFO] [UHD RF] RF UHD Generic instance constructed
[INFO] [B200] Detected Device: B210
[INFO] [B200] Operating over USB 3.
[INFO] [B200] Initialize CODEC control...
[INFO] [B200] Initialize Radio control...
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Asking for clock rate 23.040000 MHz...
[INFO] [B200] Actually got clock rate 23.040000 MHz.
RF device 'UHD' successfully opened
Setting manual TX/RX offset to 300 samples
Waiting PHY to initialize ... done!
Attaching UE...
Random Access Transmission: prach_occasion=0, preamble_index=0, ra-rnti=0x39,␣
→˓tti=2094
Random Access Complete. c-rnti=0x4602, ta=0
RRC Connected
PDU Session Establishment successful. IP: 10.45.1.2
RRC NR reconfiguration successful.

It is clear that the connection has been made successfully once the UE has been assigned an IP, this is
seen in PDU Session Establishment successful. IP: 10.45.1.2. The NR connection is then
confirmed with the RRC NR reconfiguration successful. message.

20.3. Over-the-air Setup 123

srsRAN Project Documentation

20.3.3 Testing the Network

Here, we demonstrate how to use ping and iPerf3 tools to test the connectivity and throughput in the
network.

Routing Configuration

Before being able to ping UE, you need to add a route to the UE on the host machine (i.e. the one running
the Open5GS docker container):

sudo ip ro add 10.45.0.0/16 via 10.53.1.2

Check the host routing table:

route -n

It should contain the following entries (note that Iface names might be different):

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.1 0.0.0.0 UG 100 0 0 eno1
10.45.0.0 10.53.1.2 255.255.0.0 UG 0 0 0 br-
→˓dfa5521eb807
10.53.1.0 0.0.0.0 255.255.255.0 U 0 0 0 br-
→˓dfa5521eb807
...

Next, add a default route for the UE as follows:

sudo ip route add default via 10.45.1.1 dev tun_srsue

Ping

Ping is the simplest tool to test the end-to-end connectivity in the network, i.e., it tests whether the UE
and core can communicate.

• Uplink

To test the connection in the uplink direction, run the following command from the UE machine:

ping 10.45.1.1

• Downlink

To test the connection in the downlink direction, run the following command from the machine running
the core network (i.e., Open5GS docker container):

ping 10.45.1.2

The IP for the UE can be taken from the UE console output. This might change each time a UE reconnects
to the network, so it is best practice to always double-check the latest IP assigned by reading it from the
console before running the downlink traffic.

124 Chapter 20. srsRAN gNB with srsUE

srsRAN Project Documentation

• Ping Output

Example ping output:

ping 10.45.1.1 -c 4
PING 10.45.1.1 (10.45.1.1) 56(84) bytes of data.
64 bytes from 10.45.1.1: icmp_seq=1 ttl=64 time=39.9 ms
64 bytes from 10.45.1.1: icmp_seq=2 ttl=64 time=38.9 ms
64 bytes from 10.45.1.1: icmp_seq=3 ttl=64 time=37.0 ms
64 bytes from 10.45.1.1: icmp_seq=4 ttl=64 time=36.1 ms

--- 10.45.1.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 36.085/37.952/39.859/1.493 ms

iPerf3

iPerf3 is a tool that generates (TCP and UDP) traffic and measures parameters (e.g., throughput and
packet loss) of the traffic flow.

In this example, we generate traffic in the uplink direction. To this end, we run an iPerf3 client on the
UE side and a server on the network side. UDP traffic will be generated at 10Mbps for 60 seconds. It is
important to start the server first, and then the client.

• Network-side

Start the iPerf3 server the machine running the core network (i.e., Open5GS docker container):

iperf3 -s -i 1

The server listens for traffic coming from the UE. After the client connects, the server prints flow mea-
surements every second.

• UE-side

With the network and the iPerf3 server up and running, the client can be run from the UE’s machine with
the following command:

TCP
iperf3 -c 10.53.1.1 -i 1 -t 60
or UDP
iperf3 -c 10.53.1.1 -i 1 -t 60 -u -b 10M

Traffic will now be sent from the UE to the network. This will be shown in both the server and client
consoles. Additionaly, we will observe console traces of the UE and the gNB.

Note: All routes have to be configured as presented in Routing Configuration for USRP-based setup
section.

• Iperf3 Output

Example server iPerf3 output:

iperf3 -s -i 1

(continues on next page)

20.3. Over-the-air Setup 125

srsRAN Project Documentation

(continued from previous page)

Server listening on 5201

Accepted connection from 10.45.1.2, port 40544
[5] local 10.45.1.1 port 5201 connected to 10.45.1.2 port 40546
[ID] Interval Transfer Bitrate
[5] 0.00-1.00 sec 1.20 MBytes 10.1 Mbits/sec
[5] 1.00-2.00 sec 1.22 MBytes 10.2 Mbits/sec
[5] 2.00-3.00 sec 1.16 MBytes 9.71 Mbits/sec
[5] 3.00-4.00 sec 1.12 MBytes 9.44 Mbits/sec
[5] 4.00-5.00 sec 1.25 MBytes 10.5 Mbits/sec
[5] 5.00-6.00 sec 1.25 MBytes 10.5 Mbits/sec

Example client iPerf3 output:

iperf3 -c 10.53.1.1 -i 1 -t 60 -u -b 10M
Connecting to host 10.45.1.1, port 5201
[5] local 10.45.1.2 port 40546 connected to 10.45.1.1 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 1.20 MBytes 10.1 Mbits/sec 0 117 KBytes
[5] 1.00-2.00 sec 1.25 MBytes 10.5 Mbits/sec 0 130 KBytes
[5] 2.00-3.00 sec 1.25 MBytes 10.5 Mbits/sec 0 130 KBytes
[5] 3.00-4.00 sec 1.12 MBytes 9.44 Mbits/sec 0 130 KBytes
[5] 4.00-5.00 sec 1.25 MBytes 10.5 Mbits/sec 0 130 KBytes
[5] 5.00-6.00 sec 1.12 MBytes 9.44 Mbits/sec 0 130 KBytes

• Console Traces

The following example trace was taken from the srsUE console while running the above iPerf3 test:

---------Signal-----------|-----------------DL-----------------|-----------UL-
→˓----------
rat pci rsrp pl cfo | mcs snr iter brate bler ta_us | mcs buff ␣
→˓brate bler
nr 1 0 0 -457m | 27 43 1.3 274k 0% 0.0 | 27 136k ␣
→˓ 13M 0%
nr 1 0 0 -122m | 27 43 1.4 285k 0% 0.0 | 27 0.0 ␣
→˓ 13M 0%
nr 1 0 0 -282m | 27 43 1.3 267k 0% 0.0 | 27 47k ␣
→˓ 13M 0%
nr 1 0 0 -14m | 27 43 1.4 274k 0% 0.0 | 27 3.0 ␣
→˓ 13M 0%
nr 1 0 0 -373m | 27 43 1.4 268k 0% 0.0 | 27 47k ␣
→˓ 13M 0%
nr 1 0 0 244m | 27 43 1.3 274k 0% 0.0 | 27 0.0 ␣
→˓ 13M 0%

To read more about the UE console trace metrics, see the UE User Manual.

The following example trace was taken from the gNB console at the same time period as the srsUE trace
shown above:

126 Chapter 20. srsRAN gNB with srsUE

https://docs.srsran.com/projects/4g/en/latest/usermanuals/source/srsue/source/6_ue_commandref.html#ue-commandref

srsRAN Project Documentation

-------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 15 27 275k 328 0 0% | 23.2 28 13M 398 0 0% ␣

→˓55.5k
1 4601 15 27 266k 336 0 0% | 23.1 28 13M 387 0 0% ␣

→˓ 0.0
1 4601 15 27 284k 349 0 0% | 23.1 28 13M 410 1 0% ␣

→˓ 0.0
1 4601 15 27 258k 315 0 0% | 23.1 28 12M 371 0 0% ␣

→˓ 0.0
1 4601 15 27 275k 330 0 0% | 23.2 28 13M 394 0 0% ␣

→˓55.5k
1 4601 15 27 265k 332 0 0% | 23.2 28 13M 386 1 0% ␣

→˓ 0.0

20.4 ZeroMQ-based Setup

In this section, we describe the steps required to configure the ZMQ-based RF driver in both gNB and
srsUE. The following diagram presents the setup architecture:

20.4.1 Configuration

The following config files were modified to use ZMQ-based RF driver:

• gNB config

• UE config

Details of the modifications made are outlined in following sections.

20.4. ZeroMQ-based Setup 127

srsRAN Project Documentation

gNB

Replacing the UHD driver with the ZMQ-based RF driver requires changing only ru_sdr sections of the
gNB file:

ru_sdr:
device_driver: zmq
device_args: tx_port=tcp://127.0.0.1:2000,rx_port=tcp://127.0.0.1:2001,base_

→˓srate=23.04e6
srate: 23.04
tx_gain: 75
rx_gain: 75

srsUE

When using the ZMQ-based RF driver in the srsUE, it is important to create an appropriate network
namespace in the host machine. This is achieved with the following command:

sudo ip netns add ue1

To verify the new “ue1” network namespace exists, run:

sudo ip netns list

Then, the [rf] section in the srsUE config file has to be changed as follows:

[rf]
freq_offset = 0
tx_gain = 50
rx_gain = 40
srate = 23.04e6
nof_antennas = 1

device_name = zmq
device_args = tx_port=tcp://127.0.0.1:2001,rx_port=tcp://127.0.0.1:2000,base_
→˓srate=23.04e6

In addition, the srsUE must be configured to use the created network namespace. This is achieved by
updating the [gw] section of the config file:

[gw]
netns = ue1
ip_devname = tun_srsue
ip_netmask = 255.255.255.0

128 Chapter 20. srsRAN gNB with srsUE

srsRAN Project Documentation

20.4.2 Running the Network

Once the config files are updated, the network can be set up on a single host machine, using the same
commands as in the case of the over-the-air setup.

20.4.3 Testing the Network

Routing Configuration

Before being able to ping UE, you need to add a route to the UE on the host machine (i.e. the one running
the Open5GS docker container):

sudo ip ro add 10.45.0.0/16 via 10.53.1.2

Check the host routing table:

route -n

It should contain the following entries (note that Iface names might be different):

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.1 0.0.0.0 UG 100 0 0 eno1
10.45.0.0 10.53.1.2 255.255.0.0 UG 0 0 0 br-
→˓dfa5521eb807
10.53.1.0 0.0.0.0 255.255.255.0 U 0 0 0 br-
→˓dfa5521eb807
...

Next, add a default route for the UE as follows:

sudo ip netns exec ue1 ip route add default via 10.45.1.1 dev tun_srsue

Check the routing table of ue1:

sudo ip netns exec ue1 route -n

The output should be as follows:

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.45.1.1 0.0.0.0 UG 0 0 0 tun_
→˓srsue
10.45.1.0 0.0.0.0 255.255.255.0 U 0 0 0 tun_
→˓srsue

20.4. ZeroMQ-based Setup 129

srsRAN Project Documentation

Ping

• Uplink

To test the connection in the uplink direction, use the following:

sudo ip netns exec ue1 ping 10.45.1.1

• Downlink

To run ping in the downlink direction, use:

ping 10.45.1.2

The IP for the UE can be taken from the UE console output. This might change each time a UE reconnects
to the network, so it is best practice to always double-check the latest IP assigned by reading it from the
console before running the downlink traffic.

• Ping Output

Example ping output:

sudo ip netns exec ue1 ping 10.45.1.1 -c4
PING 10.45.1.1 (10.45.1.1) 56(84) bytes of data.
64 bytes from 10.45.1.1: icmp_seq=1 ttl=64 time=26.6 ms
64 bytes from 10.45.1.1: icmp_seq=2 ttl=64 time=56.9 ms
64 bytes from 10.45.1.1: icmp_seq=3 ttl=64 time=45.2 ms
64 bytes from 10.45.1.1: icmp_seq=4 ttl=64 time=34.9 ms

--- 10.45.1.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3002ms
rtt min/avg/max/mdev = 26.568/40.907/56.878/11.347 ms

iPerf3

In this example, we generate traffic in the uplink direction. To this end, we run an iPerf3 client on the
UE side and a server on the network side. UDP traffic will be generated at 10Mbps for 60 seconds. It is
important to start the server first, and then the client.

• Network-side

Start the iPerf3 server the machine running the core network (i.e., Open5GS docker container):

iperf3 -s -i 1

The server listens for traffic coming from the UE. After the client connects, the server prints flow mea-
surements every second.

• UE-side

With the network and the iPerf3 server up and running, the client can be run from the UE’s machine with
the following command:

130 Chapter 20. srsRAN gNB with srsUE

srsRAN Project Documentation

TCP
sudo ip netns exec ue1 iperf3 -c 10.53.1.1 -i 1 -t 60
or UDP
sudo ip netns exec ue1 iperf3 -c 10.53.1.1 -i 1 -t 60 -u -b 10M

Traffic will now be sent from the UE to the network. This will be shown in both the server and client
consoles. Additionaly, we will observe console traces of the UE and the gNB.

Note: All routes have to be configured as presented in Routing Configuration for ZMQ-based setup
section.

• Iperf3 Output

Example server iPerf3 output:

iperf3 -s -i 1

Server listening on 5201

Accepted connection from 10.45.1.2, port 39176
[5] local 10.45.1.1 port 5201 connected to 10.45.1.2 port 39184
[ID] Interval Transfer Bitrate
[5] 0.00-1.00 sec 1.18 MBytes 9.91 Mbits/sec
[5] 1.00-2.00 sec 1.25 MBytes 10.5 Mbits/sec
[5] 2.00-3.00 sec 1.12 MBytes 9.44 Mbits/sec
[5] 3.00-4.00 sec 1.17 MBytes 9.85 Mbits/sec
[5] 4.00-5.00 sec 1.20 MBytes 10.1 Mbits/sec
[5] 5.00-6.00 sec 1.25 MBytes 10.5 Mbits/sec

Example client iPerf3 output:

#sudo ip netns exec ue1 iperf3 -c 10.53.1.1 -i 1 -t 60 -u -b 10M
Connecting to host 10.45.1.1, port 5201
[5] local 10.45.1.2 port 39184 connected to 10.45.1.1 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 1.31 MBytes 11.0 Mbits/sec 0 119 KBytes
[5] 1.00-2.00 sec 1.12 MBytes 9.44 Mbits/sec 0 132 KBytes
[5] 2.00-3.00 sec 1.25 MBytes 10.5 Mbits/sec 0 132 KBytes
[5] 3.00-4.00 sec 1.12 MBytes 9.44 Mbits/sec 0 132 KBytes
[5] 4.00-5.00 sec 1.25 MBytes 10.5 Mbits/sec 0 132 KBytes
[5] 5.00-6.00 sec 1.12 MBytes 9.44 Mbits/sec 0 132 KBytes

• Console Traces

The following example trace was taken from the srsUE console while running the above iPerf3 test:

---------Signal-----------|-----------------DL-----------------|-----------UL-
→˓----------
rat pci rsrp pl cfo | mcs snr iter brate bler ta_us | mcs buff ␣
→˓brate bler
nr 1 9 0 -1.8u | 27 69 1.3 282k 0% 0.0 | 27 136k ␣
→˓ 13M 0%
nr 1 8 0 505n | 27 73 1.3 299k 0% 0.0 | 27 0.0 ␣

(continues on next page)

20.4. ZeroMQ-based Setup 131

srsRAN Project Documentation

(continued from previous page)

→˓ 14M 0%
nr 1 9 0 499n | 27 n/a 1.2 276k 0% 0.0 | 27 110k ␣
→˓ 13M 0%
nr 1 9 0 1.8u | 27 66 1.3 295k 0% 0.0 | 27 3.0 ␣
→˓ 14M 0%
nr 1 9 0 759n | 27 69 1.3 277k 0% 0.0 | 27 68k ␣
→˓ 13M 0%
nr 1 9 0 188n | 27 71 1.3 290k 0% 0.0 | 27 0.0 ␣
→˓ 13M 0%

To read more about the UE console trace metrics, see the UE User Manual.

The following example trace was taken from the gNB console at the same time period as the srsUE trace
shown above:

-------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 15 27 281k 335 0 0% | 65.5 28 13M 396 0 0% ␣

→˓39.8k
1 4601 15 27 288k 353 0 0% | 65.5 28 14M 412 0 0% ␣

→˓39.8k
1 4601 15 27 293k 346 0 0% | 65.5 28 13M 410 0 0% ␣

→˓39.8k
1 4601 15 27 273k 332 0 0% | 65.5 28 13M 384 0 0% ␣

→˓ 0.0
1 4601 15 27 286k 345 0 0% | 65.5 28 14M 414 0 0% ␣

→˓ 0.0
1 4601 15 27 288k 349 0 0% | 65.5 28 14M 410 0 0% ␣

→˓ 0.0

20.5 Multi-UE Emulation

To connect multiple UEs to a single gNB using ZMQ-based RF devices, we need a broker that:

• receives DL signal from the gNB and sends its copy to each connected UE,

• receives UL signal from each connected UE, aggregates them, and sends the aggregated signal to
the gNB.

In this tutorial, we use GNU-Radio Companion to implement such a broker, as it allows easy integra-
tion with our ZMQ-based RF devices. Specifically, GNU-Radio Companion is a free and open-source
software development toolkit that provides signal processing blocks, which can be simply connected to
form a signal flow graph. By default, it also provides ZMQ-compatible blocks that allow connecting to
external processes (acting as signal sources or sinks) over TCP sockets. We exploit the ZMQ blocks to
connect with gNB and srsUE processes and transfer signal samples between them.

The following figure shows the signal flow graph of our broker:

The upper graph is responsible for handling Downlink signal samples, while the lower graph for Uplink
signal samples.

132 Chapter 20. srsRAN gNB with srsUE

https://docs.srsran.com/projects/4g/en/latest/usermanuals/source/srsue/source/6_ue_commandref.html#ue-commandref

srsRAN Project Documentation

Note that here we only provide a simple broker that allows changing path loss separately for each con-
nected UE. But thanks to the rich signal processing block library available in the GNU-Radio Compan-
ion, the provided flow graph can be easily extended with any signal processing, manipulation, and/or
visualization.

As already mentioned, the GNU-Radio Companion connects over ZMQ sockets with the gNB and srsUE
processes (i.e., their ZMQ-based RF devices). The following table lists port numbers are used in the
example flow graph:

Table 1: Ports Used in the GNU-Radio flow graph

Port Direction gNB srsUE1 srsUE2 srsUE3
TX 2000 2101 2201 2301
Rx 2001 2100 2200 2300

20.5.1 Configuration

GNU-Radio Companion

Please install GNU-Radio Companion following the instructions available here. On Ubuntu it can be
installed with the following command:

sudo apt-get install gnuradio

GNU-Radio flow graph can be downloaded here:

• GNU-Radio flow graph

Note that the flow graph allows connecting three UEs, but it can be easily adapted to support any (but
reasonable) UE number.

20.5. Multi-UE Emulation 133

https://wiki.gnuradio.org/index.php/InstallingGR

srsRAN Project Documentation

Open5GS Core

By default, the subscriber database of the dockerized Open5GS Core is populated with only one UE. A
file with a list of all UEs used in this example can be downloaded here:

• subscriber_db.csv

The file needs to be saved at: srsRAN_Project/docker/open5gs/

Then, edit the srsRAN_Project/docker/open5gs/open5gs.env file as follow:

MONGODB_IP=127.0.0.1
OPEN5GS_IP=10.53.1.2
UE_IP_BASE=10.45.0
DEBUG=false
-SUBSCRIBER_DB=001010123456780,00112233445566778899aabbccddeeff,opc,
→˓63bfa50ee6523365ff14c1f45f88737d,8000,9,10.45.1.2
+SUBSCRIBER_DB="subscriber_db.csv"

Alternatively, you can download already edited open5gs.env file here.

gNB

The following gNB config files was modified to operate with a channel bandwidth of 10 MHz and use
the ZMQ-based RF driver.

• gNB config

In addition, the total number of available PRACH preambles was set to 63 to mitigate contention among
UEs:

prach:
prach_config_index: 1 # Sets PRACH config to match what is␣

→˓expected by srsUE
+ total_nof_ra_preambles: 63 # Sets number of available PRACH preambles

srsUE

The following srsUE config files were modified to operate with a channel bandwidth of 10 MHz and use
the ZMQ-based RF driver. In addition, the config files were modified to allow the execution of multiple
srsUE processes on the same host PC. Specifically, each config file has different:

• ports for the ZMQ connections, that match the those listed in Ports Used in the GNU-Radio flow
graph.

• pcap and log filenames,

• USIM data (IMSI, etc),

• network namespace name.

You can download the srsUE configs here:

• UE1 config

• UE2 config

134 Chapter 20. srsRAN gNB with srsUE

srsRAN Project Documentation

• UE3 config

20.5.2 Running the Network

The following order must be used when running the network with multiple UEs:

1. Open5GS

2. gNB

3. All UEs

4. GNU-Radio flow graph.

Open5GS Core

Run Open5GS as follows:

cd ./srsRAN_Project/docker
docker compose up --build 5gc

gNB

Run gNB directly from the build folder (the config file is also located there) with the following command:

cd ./srsRAN_Project/build/apps/gnb
sudo ./gnb -c gnb_zmq.yaml

srsUE

First, a correct network namespace must be created for each UE:

sudo ip netns add ue1
sudo ip netns add ue2
sudo ip netns add ue3

Next, start three srsUE instances, each in a separate terminal window. This is also done directly from
within the build folder, with the config files in the same location:

cd ./srsRAN_4G/build/srsue/src
sudo ./srsue ./ue1_zmq.conf
sudo ./srsue ./ue2_zmq.conf
sudo ./srsue ./ue3_zmq.conf

Note, UEs will not connect to the gNB until the GNU-Radio flow graph has been started, as the UL and
DL channels are not directly connected between the UE and gNB.

20.5. Multi-UE Emulation 135

srsRAN Project Documentation

GNU-Radio Companion

Run the GRC Flowgraph associated with the broker.

sudo gnuradio-companion ./multi_ue_scenario.grc

When gnuradio-companion is started, click on the play button (i.e., Execute the flow graph). Now,
the signal samples are transferred between gNB and UEs. After a few seconds, all UE should attach and
get an IP address. If a srsUE connects successfully to the network, the following (or similar) should be
displayed on the console:

...
Random Access Transmission: prach_occasion=0, preamble_index=45, ra-rnti=0x39,
→˓ tti=174
Random Access Complete. c-rnti=0x4602, ta=0
RRC Connected
PDU Session Establishment successful. IP: 10.45.1.2
RRC NR reconfiguration successful.

It is clear that the connection has been made successfully once the UE has been assigned an IP, this is
seen in PDU Session Establishment successful. IP: 10.45.1.2. The NR connection is then
confirmed with the RRC NR reconfiguration successful. message.

Now, you can start traffic (e.g., ping/iperf) to/from each UE using the commands described in the previous
section.

Notes:

• The gNB and all UEs have to be started before executing the GNU-Radio flow graph.

• You will also need to restart the GNU-Radio flow graph each time the network is restarted (i.e.,
click Kill the flow graph, and then Execute the flow graph)

Path-loss Control

The path loss can be controlled for each UE separately via sliders in the flow graph control panel (note,
that the control panel pops up after starting the flow graph). The following figure shows the path loss
control panel:

You can check the impact of the path loss on the RSRP in each UE. To this end, please activate trace
logging in the srsUE console by typing t. The following example trace shows the changing RSRP that
was measured by the UE when setting diverse values of the path loss in the flow graph control panel:

t
Enter t to stop trace.
---------Signal-----------|-----------------DL-----------------|-----------UL-
→˓----------
rat pci rsrp pl cfo | mcs snr iter brate bler ta_us | mcs buff ␣
→˓brate bler
nr 1 43 0 -4.5u | 0 65 0.0 0.0 0% 0.0 | 0 0.0 ␣
→˓ 0.0 0%
nr 1 42 0 -1.4u | 0 65 0.0 0.0 0% 0.0 | 0 0.0 ␣
→˓ 0.0 0%

(continues on next page)

136 Chapter 20. srsRAN gNB with srsUE

srsRAN Project Documentation

(continued from previous page)

nr 1 36 0 -2.3 | 0 n/a 0.0 0.0 0% 0.0 | 0 0.0 ␣
→˓ 0.0 0%
nr 1 8 0 -12u | 0 n/a 0.0 0.0 0% 0.0 | 0 0.0 ␣
→˓ 0.0 0%
nr 1 8 0 -16u | 0 84 0.0 0.0 0% 0.0 | 0 0.0 ␣
→˓ 0.0 0%
nr 1 25 0 -20u | 0 82 0.0 0.0 0% 0.0 | 0 0.0 ␣
→˓ 0.0 0%
nr 1 42 0 -11u | 0 65 0.0 0.0 0% 0.0 | 0 0.0 ␣
→˓ 0.0 0%

In addition, the control panel allows setting the Time Slow Down Ratio parameter, which controls
how fast the samples are transferred between gNB and UEs (i.e., the higher the parameter value, the
slower the samples are transferred). Specifically, GNU-Radio allows to throttle how fast samples are
passed between entities (using the Throttle object). By default, the Sample Rate of the Throttle object is
set to samp_rate/slow_down_ratio, where samp_rate = 11.52 MHz and slow_down_ratio=4.
Therefore, if a connected ZMQ-based RF device generates (and consumes) samples with a sampling rate
of 11.52 MHz, it takes 4 seconds to pass them through the GNU-Radio flow graph.

Note that when samples are delivered at slower speeds, gNB and UE have more time to process them
(hence lower average CPU load). Therefore, controlling the Time Slow Down Ratio parameter might
be helpful when running the emulation on a slower host machine and/or with a high number of UEs.
You can check the impact of the Time Slow Down Ratio parameter on CPU load and network traffic
volume on the loopback interface using htop and nload lo, respectively. Also, a ping round-trip time
(RTT) between the core network and UEs is impacted when changing this parameter.

20.5. Multi-UE Emulation 137

srsRAN Project Documentation

20.5.3 Testing the Network

Once the setup is ready, you can start data traffic by following Testing the Network section for the ZMQ-
based setup. Note that here we have three UEs (hence, three network namespaces, namely ue1,ue2,ue3),
and the default route has to be configured for each of them.

20.6 Troubleshooting

20.6.1 Performance Issues

If you experience some performance-related issues (e.g., RF underflows/lates), please run the
srsran_performance script on all PCs used in your setup. The script configures the host machine (CPU,
etc.) to run with the best possible performance.

20.6.2 Reference clock

If you encounter issues with the srsUE not finding the cell and/or not being able to stay connected it
might be due to inaccurate clocks at the RF frontends. Try to use an external 10 MHz reference or use a
GPSDO oscillator.

20.6.3 5G QoS Identifier

By default, Open5GS uses 5QI = 9. If the qos section is not provided in the gNB config file, the default
one with 5QI = 9 will be generated and the UE should connect to the network. If one needs to change the
5QI, please harmonize these settings between gNB and Open5GS config files, as otherwise, a UE will
not be able to connect.

20.6.4 UE does not get IP address

If the UE successfully performs RACH procedure, gets into RRC Connected state, but finally disconnects
with RRC Release, this might indicate that the UE database in the core network is not filled properly.
Specifically, in such case, the srsUE console output will look similar to this:

Attaching UE...
Random Access Transmission: prach_occasion=0, preamble_index=8, ra-rnti=0x39,␣
→˓tti=174
Random Access Complete. c-rnti=0x4601, ta=0
RRC Connected
Received RRC Release

You can also check core network logs, for more information on the cause of this event. For example,
Open5gs might show the following information in its log output:

open5gs_5gc | 02/02 09:06:13.742: [amf] INFO: InitialUEMessage (../src/amf/
→˓ngap-handler.c:372)
open5gs_5gc | 02/02 09:06:13.742: [amf] INFO: [Added] Number of gNB-UEs is␣

(continues on next page)

138 Chapter 20. srsRAN gNB with srsUE

https://github.com/srsran/srsRAN_Project/blob/main/scripts/srsran_performance

srsRAN Project Documentation

(continued from previous page)

→˓now 2 (../src/amf/context.c:2327)
open5gs_5gc | 02/02 09:06:13.742: [amf] INFO: RAN_UE_NGAP_ID[2] AMF_UE_
→˓NGAP_ID[3] TAC[7] CellID[0x19b0] (../src/amf/ngap-handler.c:533)
open5gs_5gc | 02/02 09:06:13.742: [amf] INFO: [suci-0-001-01-0000-0-0-
→˓0123456791] Unknown UE by SUCI (../src/amf/context.c:1634)
open5gs_5gc | 02/02 09:06:13.742: [amf] INFO: [Added] Number of AMF-UEs is␣
→˓now 2 (../src/amf/context.c:1419)
open5gs_5gc | 02/02 09:06:13.742: [gmm] INFO: Registration request (../src/
→˓amf/gmm-sm.c:985)
open5gs_5gc | 02/02 09:06:13.742: [gmm] INFO: [suci-0-001-01-0000-0-0-
→˓0123456791] SUCI (../src/amf/gmm-handler.c:149)
open5gs_5gc | 02/02 09:06:13.743: [dbi] INFO: [imsi-001010123456791] Cannot␣
→˓find IMSI in DB (../lib/dbi/subscription.c:56)

From the above, it is clear that UE data is not present in the subscriber database.

Please check and populate the UE database if needed.

In case you are using Open5gs, you can open http://localhost:3000/ in your browser and log in to its
WebUI (user: admin, passwd: 1423). You should see an entry for each IMSI present in a UE database.
If the required IMSI is not present, you can add it manually by clicking on the + button in the lower right
corner. Note: the WebUI is available when running Open5gs using the docker image we provide. If
installed manually, one needs to install the WebUI separately.

In the case of the ZMQ-based setup, please check if you have properly added network namespace for
each emulated UE, i.e.:

sudo ip netns add ue1

To verify the new “ue1” network namespace exists, run:

sudo ip netns list

20.6.5 UE IP Forwarding

To ensure that the UE traffic is sent correctly to the internet the correct IP forwarding must be enabled. IP
Forwarding should be enabled on the host machine, i.e. the one running the Open5GS docker container.
This can be done with the following command:

sudo sysctl -w net.ipv4.ip_forward=1
sudo iptables -t nat -A POSTROUTING -o <IFNAME> -j MASQUERADE

Where <IFNAME> is the name of the interface connected to the internet.

To check that this has been configured correctly run the following command:

sudo ip netns exec ue1 ping -i 1 8.8.8.8

If the UE can ping the Google DNS, then the internet can be successfully accessed.

20.6. Troubleshooting 139

http://localhost:3000/

srsRAN Project Documentation

20.6.6 2nd Open5GS instance (installed manually)

The routing entries on the host PC for IPs: 10.45.0.0 and 10.53.1.0 should use the same interface, e.g.:

route -n

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.1 0.0.0.0 UG 100 0 0 eno1
10.45.0.0 10.53.1.2 255.255.0.0 UG 0 0 0 br-
→˓dfa5521eb807
10.53.1.0 0.0.0.0 255.255.255.0 U 0 0 0 br-
→˓dfa5521eb807
...

However, if a second instance of Open5GS (that was installed manually) is running on the host PC, the
route to 10.45.0.0 goes to ogstun interface. For this reason, a UE cannot access the Internet, as the host
will send packets to the manually installed Open5GS version. To solve this routing issue, you can disable
(or even remove) the manually installed Open5GS – please check sections 6 and/or 7 of the Open5GS
tutorial. In addition, you might need to disable the ogstun interface with the following command:

sudo ifconfig ogstun 0.0.0.0 down

20.6.7 USRP X300/X310

The following config files changes are required to run the above setup with USRP X300/X310.

In the gnb config file, the following parameters in ru_sdr section have to changed:

ru_sdr:
...
device_args: type=x300,addr=X.X.X.X,master_clock_rate=184.32e6,send_frame_

→˓size=8000,recv_frame_size=8000
...
srate: 30.72

In the srsUE config file, the following parameters have to changed:

[rf]
...
srate = 30.72e6
...
device_args = type=x300,addr=X.X.X.X,master_clock_rate=184.32e6,send_frame_
→˓size=8000,recv_frame_size=8000,clock=external,sync=external
...
[expert]
lte_sample_rates = true

140 Chapter 20. srsRAN gNB with srsUE

https://open5gs.org/open5gs/docs/guide/01-quickstart/
https://open5gs.org/open5gs/docs/guide/01-quickstart/

srsRAN Project Documentation

20.7 Limitations

20.7.1 srsUE

Multiple TACs

• srsUE does not support the use of multiple TACs. Using multple TACs will result in errors parsing
NAS messages from the core, resulting in the UE not connecting correctly.

20.7. Limitations 141

CHAPTER

TWENTYONE

SRSRAN GNB WITH COTS UES

Warning: Operating a private 5G SA network on cellular frequency bands may be tightly regulated
in your jurisdiction. Seek the approval of your telecommunications regulator before doing so.

21.1 Overview

This tutorial demonstrates how to configure and connect a 5G capable COTS UE to a 5G SA network
using the srsRAN Project gNB and a 3rd-party 5G core (Open5GS in this example).

To connect a COTS UE to a 5G network using the srsRAN Project gNB users will need the following
requirements:

• A PC with a linux based OS

• srsRAN Project CU/DU

• RF-frontend compatible with srsRAN Project

• A third-party 5G Core

• A 5G SA capable COTS UE

• A test USIM/ISIM/SIM card (must be a test sim or programmable card with known keys)

• We also recommend the use of an external clock source such as an octoclock or GPSDO

This specific implementation uses the following:

• Dell XPS-13 (Intel i7-10510U CPU) with Ubuntu 20.04

• srsRAN Project CU/DU

• B210 USRP

• Open5GS 5G Core

• OnePlus 8T

• SysmoISIM-SJA2 with reprogrammed credentials

• Leo Bodnar GPS Reference Clock

142

srsRAN Project Documentation

21.2 Setup Considerations

21.2.1 Open5GS

For this example we are using Open5GS as the 5G Core.

Open5GS is a C-language Open Source implementation for 5G Core and EPC. The following links will
provide you with the information needed to download and set-up Open5GS so that it is ready to use with
the srsRAN Project gNB:

• GitHub

• Quickstart Guide

21.2.2 COTS UE

You should make sure your device is capable of operating in 5G SA mode and that it operates in the
bands supported by the srsRAN Project gNB.

The following bands are not currently supported by srsRAN:

• Band 79 (both 15 and 30 kHz sub-carrier-spacing)

• Band 34, 38, 39 (15 kHz sub-carrier-spacing)

21.2.3 External Clock

A Leo Bodnar GPS reference clock was used as the USRP clock source for this set-up.

The use of an external clock is not essential, but it mitigates possible errors occurring as result of inaccu-
racies in the internal clock of the RF front-end being used. The issue comes from the CFOs and timings
tolerated by 5G handsets - the onboard clocks within SDRs are not always accurate enough to operate
within the limits allowed by the handsets. Using an external clock, which is much more accurate than an
SDR onboard clock, reduces the likelihood that a COTS UE will be unable to see/ connect to the network
due to synchronization issues.

21.3 Configuration

The following srsRAN configuration files were modified for this set-up:

• gnb_b210_20MHz_oneplus_8t.yml

The following Open5GS configuration files were modified for this set-up:

• amf.yaml

• upf.yaml

The aspects of the network should be configured in the following order:

1. gNB

2. ISIM

21.2. Setup Considerations 143

https://github.com/open5gs/open5gs
https://open5gs.org/open5gs/docs/guide/01-quickstart/
http://www.leobodnar.com/shop/index.php?main_page=product_info&cPath=107&products_id=234

srsRAN Project Documentation

3. Core

4. COTS UE

21.3.1 gNB

The gNB is configured using the base configuration example found here, with some slight modifications.

The configuration has the following modifications from the original example:

• Set the clock source of the USRP to external.

• Set the ARFCN of the cell to 627340. This ensured the gNB was broadcasting in a free area of
spectrum with a BW of 20 MHz in our location.

• The PLMN is changed to 90170. Using the OnePlus 8t, we have found that by forcing a roaming
scenario, the phone sees the network and attaches more reliably. A roaming scenario is forced by
setting different PLMNs in the cell and the ISIM in the phone.

The above modifications are specific to the set-up being used here. It is recommended to adjust the
ARFCN to your local set-up so that you are transmitting in a free area of spectrum.

To configure the connection between the core and the gNB, you need to set the AMF addr to the address
of the AMF. In this example, the default value is used in the gNB configuration file, and the relevant
changes are made in the Open5GS configuration files.

amf:
addr: 127.0.1.100 # The␣

→˓address or hostname of the AMF.
bind_addr: 127.0.0.1 # A local␣

→˓IP that the gNB binds to for traffic from the AMF.

ru_sdr:
device_driver: uhd # The RF␣

→˓driver name.
device_args: type=b200,num_recv_frames=64,num_send_frames=64 #␣

→˓Optionally pass arguments to the selected RF driver.
- clock: # Specify␣
→˓the clock source used by the RF.
+ clock: external

sync: # Specify␣
→˓the sync source used by the RF.

srate: 23.04 # RF␣
→˓sample rate might need to be adjusted according to selected bandwidth.

otw_format: sc12
tx_gain: 50 #␣

→˓Transmit gain of the RF might need to adjusted to the given situation.
rx_gain: 60 # Receive␣

→˓gain of the RF might need to adjusted to the given situation.

cell_cfg:
- dl_arfcn: 632628 # ARFCN␣
→˓of the downlink carrier (center frequency).
+ dl_arfcn: 627340

(continues on next page)

144 Chapter 21. srsRAN gNB with COTS UEs

https://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_rf_b200_tdd_n78_20mhz.yml

srsRAN Project Documentation

(continued from previous page)

band: 78 # The NR␣
→˓band.

channel_bandwidth_MHz: 20 #␣
→˓Bandwith in MHz. Number of PRBs will be automatically derived.

common_scs: 30 #␣
→˓Subcarrier spacing in kHz used for data.
- plmn: "00101" # PLMN␣
→˓broadcasted by the gNB.
+ plmn: "90170"

tac: 7 #␣
→˓Tracking area code (needs to match the core configuration).

pci: 1 #␣
→˓Physical cell ID.

21.3.2 ISIM

SIM Programming

As outlined previously, this set-up uses the OnePlus 8t, during internal tests it was found that this phone
(and other OnePlus devices) sometimes connect to the network more easily in a roaming scenario. This
is achieved by setting different PLMNs for the cell and the ISIM in the phone.

The MMC, MNC, IMSI and other credentials in the ISIM can be set by reprogramming. We repro-
grammed our SysmoISIM-SJA2 using the following steps.

Download pySim :

git clone https://github.com/osmocom/pysim
cd pysim
sudo apt-get install --no-install-recommends \

pcscd libpcsclite-dev \
python3 \
python3-setuptools \
python3-pyscard \
python3-pip

pip3 install -r requirements.txt

You can then run the following commands from within the pysim directory.

Check the current ISIM configuration:

./pySim-read.py -p0

Reconfigure the ISIM:

./pySim-prog.py -p0 -s <ICCID> --mcc=<MCC> --mnc=<MNC> -a <ADM-KEY> --imsi=
→˓<IMSI> -k <KI> --opc=<OPC>

You need to at least set the PLMN to 00101, optionally you can also reconfigure other aspects of the
ISIM. For this set-up the following command was used:

21.3. Configuration 145

https://github.com/osmocom/pysim

srsRAN Project Documentation

./pySim-prog.py -p0 -s 8988211000000689615 --mcc=001 --mnc=01 -a 77190612 --
→˓imsi=001010123456789 -k 41B7157E3337F0ADD8DA89210D89E17F --
→˓opc=1CD638FC96E02EBD35AA0D41EB6F812F

Note: You will need to get the ICCID, ADM-KEY and other security information from the SIM provider.

SUCI Configuration

If you are using a sysmoISIM-SJA2 ISIM (5G-enabled) as in this example, then you will need to modify
the 5G-related fields of the sim card. In particular you need to configure or disable SUPI concealment
(SUCI).

SUPI concealment can be disabled using the following commands. You should replace <ADM-KEY> with
the ADM key of the respective SIM card.

Note: verify_adm does not print any output on success. If you see something like “SW Mismatch:
Expected 9000 and got 6982” the ADM key is not correct. Keep in mind that after 3 failed write attempts
due to a wrong ADM key the SIM is blocked and cannot be rewritten again.

pySIM-shell (MF)> select MF
pySIM-shell (MF)> select ADF.USIM
pySIM-shell (MF/ADF.USIM)> select EF.UST
pySIM-shell (MF)> verify_adm <ADM-KEY>
pySIM-shell (MF/ADF.USIM/EF.UST)> ust_service_deactivate 124
pySIM-shell (MF/ADF.USIM/EF.UST)> ust_service_deactivate 125

After these steps UST service 124 and 125 should be disabled. You can verify the ISIM configuration
using the following command:

./pySim-read.py -p0

More information on pySim and SUCI configuration can be found in this guide in the pySim documen-
tation.

21.3.3 Open5GS

For this set-up Open5GS is running as a service on the machine, this is the “default” way of running
Open5GS as described in their documentation. If you are running open5GS in a docker container, or
other environment, your configuration will vary slightly.

The Open5GS 5G Core Quickstart Guide provides a comprehensive overview of how to configure
Open5GS to run as a 5G Core.

To configure the core correctly the following steps need to be taken:

• Configure the core to connect to the gNB.

• Configure the PLMN and TAC values so that they are the same as those present in the gNB con-
figuration.

146 Chapter 21. srsRAN gNB with COTS UEs

https://downloads.osmocom.org/docs/pysim/master/html/suci-tutorial.html
https://open5gs.org/open5gs/docs/guide/01-quickstart/#:~:text=restart%20open5gs%2Dsgwud-,Setup%20a%205G%20Core,-You%20will%20need

srsRAN Project Documentation

• Register the ISIM credentials to the list of subscribers through the Open5GS WebUI.

amf.yml

In the AMF configuration file the following modifications need to be made:

• Set the NGAP addr, this should be the same as the AMF addr as seen in the gNB configuration file

• Set the MCC, MNC and TAC values such that they are the same as the PLMN and TAC used in
the gNB configuration file, and different to that of the ISIM

ngap:
- - addr: 127.0.0.5
+ - addr: 127.0.1.100

metrics:
addr: 127.0.0.5
port: 9090

guami:
- plmn_id:

- mcc: 999
- mnc: 70
+ mcc: 901
+ mnc: 70

amf_id:
region: 2
set: 1

tai:
- plmn_id:

- mcc: 999
- mnc: 70
+ mcc: 901
+ mnc: 70
- tac: 1
+ tac: 7

plmn_support:
- plmn_id:

- mcc: 999
- mnc: 70
+ mcc: 901
+ mnc: 70

upf.yml

In the UPF configuration file the following modifications need to be made:

• Set the GTPU addr, this should be the same as the AMF addr as seen in the gNB configuration file

upf:
pfcp:

- addr: 127.0.0.7
gtpu:

(continues on next page)

21.3. Configuration 147

srsRAN Project Documentation

(continued from previous page)

- - addr: 127.0.0.7
+ - addr: 127.0.1.100

subnet:
- addr: 10.45.0.1/16
- addr: 2001:db8:cafe::1/48

metrics:
- addr: 127.0.0.7
port: 9090

User Database

You can see how to register subscriber information with the core here.

You will need to at least fill the IMSI, AMF, K and OPc related to the subscriber, as well as the APN.

Note: Set the APN to IPv4, not IPv4/6 or IPv6.

21.3.4 COTS UE

To configure the OnePlus 8t to connect to the network the following steps must be taken:

1. Enable the ISIM

2. Enable 5G SA Mode

3. Enable data roaming

4. Disable VoLTE and/or VoNR

5. Configure the APN

6. Force NR only

Enable ISIM, 5G and data roaming

The first step in configuring the UE is to make sure the SIM and the use of a 5G NR carrier is enabled.
In this example the ISIM is placed in SIM tray 1, and there is no other SIM present.

In the first image, you can see that the ISIM is correctly found, and that mobile data is enabled. In the
second image you can see that the ISIM is enabled, data roaming is enabled and that 5G is set as the
preferred network type.

148 Chapter 21. srsRAN gNB with COTS UEs

https://open5gs.org/open5gs/docs/guide/01-quickstart/#:~:text=Register%20Subscriber%20Information

srsRAN Project Documentation

If you cannot see the 5G option in Preferred network type, then you may need to activate it. This can
be enabled under the Developer Options, if you do not have access to Developer Options see this guide.
In Developer Options go to Networking and enable 5G, you may also need to set 5G network mode
to NSA + SA Mode

The final option that needs to be enabled here is data roaming, this is shown in the second image.

In some phones there may also be an option to configure VoNR and/or VoLTE, it is important to make sure
that this is disabled.

Configure APN

The above images show the APN configuration used in this example. The key points to note are the
following:

• The APN Name is arbitrary, and can have any string value.

21.3. Configuration 149

https://developer.android.com/studio/debug/dev-options

srsRAN Project Documentation

• The APN option needs to be set to the same as the DNN/APN option as set in the Open5GS subscriber
registration.

• The APN protocol and APN roaming protocol are both set to IPv4 as in the Open5GS sub-
scriber registration. Setting to IPv6 or IPv4/6 can lead to issues connecting the internet.

• All other options are left to the default values.

Force NR

The application 5G Switch - Force 5G Only can be used to force your device to only see 5G NR
networks. This works with devices that are not rooted, and was used as part of this setup to ensure the
device could see and attach to the network. Although it was not a requirement to get the phone to connect
it made it easier to consistently connect to the network.

The apps Play Store page looks like the following:

When you run the app you can select NR Only from the Set Preferred Network Type menu. This
looks like the following:

When you select this option, you may see the Preferred Network Type field in the SIM configuration
menu change to 4G/3G/2G (Auto) as seen in the screenshot in the Connecting to the Network section.
This is fine, and can be ignored. Once NR is selected in the app, you do not have to select 5G from the
SIM configuration menu.

21.4 Connecting the COTS UE

To connect the COTS UE to the network the following steps must be taken once the phone and network
have been correctly configured:

1. Run the gNB and ensure it is correctly connected to the core

2. Search for the network from the UE

3. Select and connect to the network

150 Chapter 21. srsRAN gNB with COTS UEs

srsRAN Project Documentation

4. Verify the attach

5. Stream data

21.4.1 Setting-up the Network

Check that the Core is running correctly

First it is good to check that Open5GS is running correctly, this can be done with the following command:

ps aux | grep open5gs

If the core is running correctly the following should be given as the output:

open5gs 1601 0.0 0.0 141680 15872 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-bsfd -c /etc/open5gs/bsf.yaml
open5gs 1606 0.0 0.1 134452 24840 ? Ssl 10:36 0:01 /usr/bin/
→˓open5gs-nrfd -c /etc/open5gs/nrf.yaml
open5gs 1613 0.0 0.2 147068 41720 ? Ssl 10:36 0:02 /usr/bin/
→˓open5gs-scpd -c /etc/open5gs/scp.yaml
open5gs 2663 0.0 0.1 2801740 16788 ? Ssl 10:36 0:02 /usr/bin/
→˓open5gs-hssd -c /etc/open5gs/hss.yaml
open5gs 2675 0.0 0.1 2800268 16568 ? Ssl 10:36 0:02 /usr/bin/
→˓open5gs-pcrfd -c /etc/open5gs/pcrf.yaml
open5gs 2676 0.0 0.1 185572 21584 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-pcfd -c /etc/open5gs/pcf.yaml
open5gs 2690 0.0 0.1 169668 20768 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-udrd -c /etc/open5gs/udr.yaml
open5gs 3065 0.0 0.1 155984 20136 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-amfd -c /etc/open5gs/amf.yaml
open5gs 3067 0.0 0.0 136052 15960 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-ausfd -c /etc/open5gs/ausf.yaml
open5gs 3071 0.0 0.0 2778684 14404 ? Ssl 10:36 0:02 /usr/bin/
→˓open5gs-mmed -c /etc/open5gs/mme.yaml
open5gs 3074 0.0 0.0 134300 15416 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-nssfd -c /etc/open5gs/nssf.yaml
open5gs 3079 0.0 0.1 260852 19656 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-sgwcd -c /etc/open5gs/sgwc.yaml
open5gs 3081 0.0 0.1 249660 17840 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-sgwud -c /etc/open5gs/sgwu.yaml
open5gs 3084 0.0 0.2 3127048 44456 ? Ssl 10:36 0:02 /usr/bin/
→˓open5gs-smfd -c /etc/open5gs/smf.yaml
open5gs 3091 0.0 0.1 136072 17136 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-udmd -c /etc/open5gs/udm.yaml
open5gs 3099 0.0 0.1 274176 24588 ? Ssl 10:36 0:00 /usr/bin/
→˓open5gs-upfd -c /etc/open5gs/upf.yaml

In total there should be 16 processes running.

Once the core is running it is helpful to view the AMF logs for the duration of testing. This makes is
clear when the gNB attaches, and when the COTS UE successfully attaches to the network.

To view this you can run this command:

21.4. Connecting the COTS UE 151

srsRAN Project Documentation

tail -f /var/log/open5gs/amf.log

You should see an output similar to the following:

04/03 10:36:52.012: [sctp] INFO: AMF initialize...done (../src/amf/app.c:33)
04/03 10:36:52.049: [sbi] INFO: [aea4db10-d1fa-41ed-916b-e56218b693e5] (NRF-
→˓notify) NF registered (../lib/sbi/nnrf-handler.c:632)
04/03 10:36:52.049: [sbi] INFO: [aea4db10-d1fa-41ed-916b-e56218b693e5] (NRF-
→˓notify) NF Profile updated (../lib/sbi/nnrf-handler.c:642)
04/03 10:36:52.049: [sbi] WARNING: [aea4db10-d1fa-41ed-916b-e56218b693e5]␣
→˓(NRF-notify) NF has already been added (../lib/sbi/nnrf-handler.c:636)
04/03 10:36:52.049: [sbi] INFO: [aea4db10-d1fa-41ed-916b-e56218b693e5] (NRF-
→˓notify) NF Profile updated (../lib/sbi/nnrf-handler.c:642)
04/03 10:36:52.049: [sbi] WARNING: NF EndPoint updated [127.0.0.12:80] (../
→˓lib/sbi/context.c:1618)
04/03 10:36:52.049: [sbi] WARNING: NF EndPoint updated [127.0.0.12:7777] (../
→˓lib/sbi/context.c:1527)
04/03 10:36:52.238: [app] INFO: SIGHUP received (../src/main.c:58)
04/03 10:36:52.350: [sbi] INFO: [aea6bae8-d1fa-41ed-904f-f78f7a58f5f3] (NRF-
→˓notify) NF registered (../lib/sbi/nnrf-handler.c:632)
04/03 10:36:52.350: [sbi] INFO: [aea6bae8-d1fa-41ed-904f-f78f7a58f5f3] (NRF-
→˓notify) NF Profile updated (../lib/sbi/nnrf-handler.c:642)

Run the gNB

To run the gNB using the configuration file above, navigate to srsRAN_Project/build/apps/gnb and
use the following command:

sudo ./gnb -c gnb_b210_20MHz_oneplus_8t.yml

This above command assumes the configuration file is located in the same folder.

Once the gNB is running you should see the following output:

--== srsRAN gNB (commit fbe73a49c) ==--

Connecting to AMF on 127.0.1.100:38412
[INFO] [UHD] linux; GNU C++ version 9.3.0; Boost_107100; UHD_4.0.0.0-666-
→˓g676c3a37
[INFO] [LOGGING] Fastpath logging disabled at runtime.
Making USRP object with args 'type=b200,num_recv_frames=64,num_send_frames=64'
[INFO] [B200] Detected Device: B210
[INFO] [B200] Operating over USB 3.
[INFO] [B200] Initialize CODEC control...
[INFO] [B200] Initialize Radio control...
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Setting master clock rate selection to 'automatic'.
[INFO] [B200] Asking for clock rate 16.000000 MHz...
[INFO] [B200] Actually got clock rate 16.000000 MHz.

(continues on next page)

152 Chapter 21. srsRAN gNB with COTS UEs

srsRAN Project Documentation

(continued from previous page)

[INFO] [MULTI_USRP] Setting master clock rate selection to 'manual'.
[INFO] [B200] Asking for clock rate 23.040000 MHz...
[INFO] [B200] Actually got clock rate 23.040000 MHz.
Cell pci=1, bw=20 MHz, dl_arfcn=627340 (n78), dl_freq=3410.1 MHz, dl_ssb_
→˓arfcn=627264, ul_freq=3410.1 MHz

==== gNodeB started ===
Type <t> to view trace

If the connection to the core is successful you should see the following from the AMF log:

04/03 13:25:13.469: [amf] INFO: gNB-N2 accepted[127.0.0.1]:47633 in ng-path␣
→˓module (../src/amf/ngap-sctp.c:113)
04/03 13:25:13.469: [amf] INFO: gNB-N2 accepted[127.0.0.1] in master_sm␣
→˓module (../src/amf/amf-sm.c:706)
04/03 13:25:13.469: [amf] INFO: [Added] Number of gNBs is now 1 (../src/amf/
→˓context.c:1034)

21.4.2 Connecting to the Network

The COTS UE can now search for the network. To do this, navigate to Mobile Network > SIM 1 > Carrier
and search for the network.

When you enter the Carrier menu your device may automatically search for available carriers, if not you
can manually select the search option from the top right of the screen.

If the device can successfully receive SIBs (specifically SIB1) and “see” the network it will appear of the
list of available carriers. It will be displayed as Open5GS 5G or 90170 5G. If your PLMN is something
else it may be displayed as [PLMN] 5G.

The following image shows what this may look like:

Select the carrier for the network, in this instance Open5GS 5G, the UE should then attach to the network.

To confirm the attach is successful you can monitor both the AMF log and gNB console output.

The AMF log should look similar to the following:

21.4. Connecting the COTS UE 153

srsRAN Project Documentation

04/27 13:16:31.746: [amf] INFO: InitialUEMessage (../src/amf/ngap-handler.
→˓c:361)
04/27 13:16:31.746: [amf] INFO: [Added] Number of gNB-UEs is now 1 (../src/
→˓amf/context.c:2036)
04/27 13:16:31.746: [amf] INFO: RAN_UE_NGAP_ID[0] AMF_UE_NGAP_ID[78]␣
→˓TAC[7] CellID[0x0] (../src/amf/ngap-handler.c:497)
04/27 13:16:31.746: [amf] INFO: [suci-0-001-01-0-0-0-0000068960] Known UE by␣
→˓5G-S_TMSI[AMF_ID:0x20040,M_TMSI:0xdd00ff1a] (../src/amf/context.c:1402)
04/27 13:16:31.746: [gmm] INFO: Registration request (../src/amf/gmm-sm.c:134)
04/27 13:16:31.746: [gmm] INFO: [suci-0-001-01-0-0-0-0000068960] 5G-S_
→˓GUTI[AMF_ID:0x20040,M_TMSI:0xdd00ff1a] (../src/amf/gmm-handler.c:169)
04/27 13:16:31.913: [gmm] INFO: [imsi-001010000068960] Registration complete␣
→˓(../src/amf/gmm-sm.c:1063)
04/27 13:16:31.913: [amf] INFO: [imsi-001010000068960] Configuration update␣
→˓command (../src/amf/nas-path.c:389)
04/27 13:16:31.913: [gmm] INFO: UTC [2023-04-27T13:16:31] Timezone[0]/
→˓DST[0] (../src/amf/gmm-build.c:502)
04/27 13:16:31.913: [gmm] INFO: LOCAL [2023-04-27T13:16:31] Timezone[0]/
→˓DST[0] (../src/amf/gmm-build.c:507)
04/27 13:16:32.105: [gmm] INFO: UE SUPI[imsi-001010000068960] DNN[srsapn] S_
→˓NSSAI[SST:1 SD:0xffffff] (../src/amf/gmm-handler.c:1042)

The gNB trace should show the following:

-------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 15 15 4.3k 7 0 0% | 21.3 23 17k 4 0 0% ␣

→˓ 0.0
1 4601 15 27 287k 84 0 0% | 23.1 27 233k 39 0 0% ␣

→˓ 0.0
1 4601 15 28 1.2k 1 0 0% | 21.8 28 8.7k 2 0 0% ␣

→˓ 0.0
1 4601 15 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 15 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 15 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 12 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 15 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 15 28 53k 10 0 0% | 24.6 26 55k 32 0 0% ␣

→˓ 0.0
1 4601 15 28 7.7k 4 0 0% | 22.7 28 17k 4 0 0% ␣

→˓ 0.0
1 4601 15 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0

154 Chapter 21. srsRAN gNB with COTS UEs

srsRAN Project Documentation

21.5 Traffic and Testing

21.5.1 Speed Test

Running a speedtest directly from google gives the following results:

While running this test, the following was observed on the gNB console:

Uplink Test

-------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 15 28 23M 820 8 0% | 24.3 27 376k 90 0 0% ␣

→˓ 0.0
1 4601 15 28 31M 1070 6 0% | 22.4 28 141k 33 0 0% ␣

→˓ 0.0
1 4601 15 28 31M 1068 8 0% | 23.7 27 155k 39 0 0% ␣

→˓ 0.0
1 4601 15 28 31M 1064 6 0% | 23.3 28 134k 29 0 0% ␣

→˓ 0.0
1 4601 15 28 31M 1060 9 0% | 22.5 28 150k 32 0 0% ␣

→˓ 0.0
1 4601 15 28 31M 1071 6 0% | 23.1 27 323k 68 0 0% ␣

→˓ 0.0

Downlink Test

-------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 15 27 548k 447 3 0% | 17.1 25 17M 596 4 0% ␣

→˓150k
1 4601 15 27 598k 456 6 1% | 17.4 25 17M 596 4 0% ␣

(continues on next page)

21.5. Traffic and Testing 155

srsRAN Project Documentation

(continued from previous page)

→˓150k
1 4601 15 27 502k 468 2 0% | 17.5 25 17M 600 0 0% ␣

→˓150k
1 4601 15 27 544k 449 2 0% | 18.2 26 18M 598 2 0% ␣

→˓150k
1 4601 15 27 470k 448 2 0% | 18.7 27 19M 595 5 0% ␣

→˓150k
1 4601 15 27 485k 455 6 1% | 18.6 27 19M 594 6 1% ␣

→˓150k

21.5.2 Video Test

The following shows an example trace output seen while streaming video from the internet:

-------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 14 27 1.3M 111 15 11% | 22.6 28 109k 25 0 0% ␣

→˓ 0.0
1 4601 15 27 1.9M 180 4 2% | 22.4 28 109k 25 0 0% ␣

→˓ 0.0
1 4601 15 28 3.3M 302 0 0% | 22.7 28 109k 25 0 0% ␣

→˓ 0.0
1 4601 15 28 5.5M 489 0 0% | 22.5 28 109k 25 0 0% ␣

→˓ 0.0
1 4601 15 28 7.6M 553 0 0% | 22.5 28 109k 25 0 0% ␣

→˓ 0.0
1 4601 15 28 9.7M 630 0 0% | 22.8 28 109k 25 0 0% ␣

→˓ 0.0
1 4601 15 28 12M 651 0 0% | 22.7 28 109k 25 0 0% ␣

→˓ 0.0
1 4601 15 28 12M 656 1 0% | 22.8 28 112k 27 0 0% ␣

→˓ 0.0
1 4601 15 28 12M 679 0 0% | 22.8 28 109k 25 0 0% ␣

→˓ 0.0
1 4601 15 28 12M 634 1 0% | 22.6 28 109k 25 0 0% ␣

→˓ 0.0
1 4601 15 28 7.8M 464 0 0% | 22.3 28 83k 19 0 0% ␣

→˓ 0.0

156 Chapter 21. srsRAN gNB with COTS UEs

srsRAN Project Documentation

21.6 Troubleshooting

21.6.1 Network Not Visible

• If you are not using a GPSDO or other external clock, you may need to use one. As explained
previously, the onboard clocks within SDRs are not always accurate enough to operate within the
limits allowed by the handsets.

• For this device, the ISIM needed to be in SIM tray 2. If your device is dual SIM capable and you
cannot see the network, try placing the ISIM in the other slot.

• If you were previously able to see the network, but now cannot, you should eject the ISIM and insert
it again. The device may be blacklisting the gNB if the device has previously tried to connect and
failed.

• You should check that the gNB is transmitting correctly. This can be done with a spectrum analyzer
or tools like gr-fosphor and Maia SDR. An example of a “healthy” gNB broadcast from Maia SDR
can be seen here:

21.6.2 Unable to Attach

If you can see the network, but cannot attach, here are some things to test:

• Check that the subscriber has been added correctly to the Open5GS list of users. If you did not
restart the Open5Gs services after making modifications, then do so and retry connecting the UE.
Open5GS does not support on-the-fly modifications to subscribers or config files.

• The device may not be able to PRACH. If you are using NSG, then you will be able to see the
control messages being exchanged between the UE and the gNB, check this to see whether or not
the PRACH was successful. If not, here are a list of things to check:

– The signal quality (use Maia SDR, Fosphor or some other tool); you can adjust the Tx and
Rx gains to compensate for this. If there are any commercial cells broadcasting in the same
area of spectrum this could also be causing RF issues.

– Timing issues; if there are discrepencies in timing then the UE will not be able to connect.
Use an external clock to overcome this.

21.6. Troubleshooting 157

https://kb.ettus.com/Fosphor
https://maia-sdr.org/

srsRAN Project Documentation

21.6.3 No Internet Access

If your device is connected to the network but cannot access the internet it is most likely an issue with
the APN configuration. Make sure that the credentials and info are the same across both the UE and the
APN configuration in the Core. The main things to check are:

• The APN should have the same ID in both the phone and core

• Set the protocol to IPv4

• Make sure VoNR/ VoLTE is disabled on the UE

• Restart all Open5GS services and try again

21.6.4 UE Disconnects after a few Minutes

Some Android smartphones silently drop the network connection if IMS is not configured within a couple
of minutes after attach. We confirmed this behavior with Google Pixel 6 having a timeout of 180s (3
minutes), but it may apply to other devices and vendors as well.

A possible solution without the need to configure IMS is to either set an infinite timeout or disable the
feature in smartphone. For this purpose, open a hidden IMS settings menu by dialing *#*#0702#*#*,
then change one of the two following settings:

• Infinite timeout: Set NR_TIMER_WAIT_IMS_REGISTRATION from default 180 to -1

• Disable timeout: Set SUPPORT_IMS_NR_REGISTRATION_TIMER from default 1 to 0

Examples:

158 Chapter 21. srsRAN gNB with COTS UEs

srsRAN Project Documentation

The smartphone stores these setting persistently across reboots on a per-IMSI basis, i.e. if you change
the SIM the UE remembers the settings for each SIM separately.

21.7 Tested Devices

You can find a list of all of the devices that have been tested by the SRS team and reported by the
community here. This list contains information about the devices being used, and the configuration of
the network.

21.7. Tested Devices 159

CHAPTER

TWENTYTWO

SRSRAN GNB WITH AMARISOFT UE

22.1 Overview

The Amarisoft UE simulator (AmariUE) is a commercial software radio solution that supports the sim-
luation of up to 1000s of UE devices. This tutorial outlines how the AmariUE can be used to test and
exercise srsRAN gNB. In this example, we will use the open5GS core network to complete the end-to-
end 5G network. Usually the gNB and UE connect with each other using physical radios for over-the-air
transmissions. However, srsRAN gNB also includes support for virtual radios, which use the ZeroMQ
networking library to transfer radio samples between applications. This approach is very useful for de-
velopment, testing, debugging, CI/CD or for teaching and demonstrating.

This tutorial details two example setups: connecting the srsRAN gNB to AmariUE using virtual radios
(ZMQ), and using physical radios (USRP B210).

22.2 Hardware and Software Overview

For this application note, the following hardware and software are used:

• PC with Ubuntu 22.04.2

• srsRAN Project

• Amarisoft UE (2021-09-18 or later)

• Two Ettus Research USRP B210s (connected over USB3)

• Open5GS 5G Core

• ZeroMQ

Note: Ideally the USRPs would be connected to a 10 MHz external reference clock or GPSDO, although
this is not a strict requirement. We recommend the Leo Bodnar GPSDO.

160

https://github.com/srsran/srsRAN_project
https://www.amarisoft.com/technology/ue-simulator/
https://www.ettus.com/all-products/ub210-kit/
https://open5gs.org/
https://zeromq.org/
http://www.leobodnar.com/shop/index.php?main_page=product_info&cPath=107&products_id=234&zenid=5194baec39dbc91212ec4ac755a142b6

srsRAN Project Documentation

22.2.1 Amarisoft UE

Amarisoft UE simulator (AmariUE) is a commercial solution that supports functional and performance
testing of 5G networks. Acting as a 3GPP compliant LTE, NB-IOT and NR UE, it can simulate hundreds
of UEs sharing the same spectrum. For more information visit the Amarisoft website.

22.2.2 Open5GS

For this example we are using Open5GS as the 5G Core.

Open5GS is a C-language Open Source implementation for 5G Core and EPC. The following links will
provide you with the information needed to download and setup Open5GS so that it is ready to use with
srsRAN 4G:

• GitHub

• Quickstart Guide

Note: This tutorial assumes that the 5G Core Network is running on a different machine than the machine
running Amarisoft UE.

22.3 Installation

22.3.1 ZeroMQ

First thing is to install ZeroMQ and build srsRAN. On Ubuntu, ZeroMQ development libraries can be
installed with:

sudo apt-get install libzmq3-dev

Alternatively, installing from sources can also be done.

First, one needs to install libzmq:

git clone https://github.com/zeromq/libzmq.git
cd libzmq
./autogen.sh
./configure
make
sudo make install
sudo ldconfig

Second, install czmq:

git clone https://github.com/zeromq/czmq.git
cd czmq
./autogen.sh
./configure

(continues on next page)

22.3. Installation 161

https://www.amarisoft.com/
https://github.com/open5gs/open5gs
https://open5gs.org/open5gs/docs/guide/01-quickstart/

srsRAN Project Documentation

(continued from previous page)

make
sudo make install
sudo ldconfig

22.3.2 srsRAN Project gNB

Once ZeroMQ is installed, you need to compile srsRAN (assuming you have already installed all the
required dependencies). Note, if you have already built and installed srsRAN prior to installing ZMQ
and other dependencies you will have to re-run the make command to ensure srsRAN recognizes the
addition of ZMQ:

git clone https://github.com/srsran/srsRAN_Project.git
cd srsRAN_Project
mkdir build
cd build
cmake ../ -DENABLE_EXPORT=ON -DENABLE_ZEROMQ=ON
make -j`nproc`

ZeroMQ is disabled by default, this is enabled when running cmake by including -DENABLE_EXPORT=ON
-DENABLE_ZEROMQ=ON.

Pay extra attention to the cmake console output. Make sure you read the following line:

...
-- FINDING ZEROMQ.
-- Checking for module 'ZeroMQ'
-- No package 'ZeroMQ' found
-- Found libZEROMQ: /usr/local/include, /usr/local/lib/libzmq.so
...

22.3.3 Amarisoft UE

Download the appropriate version of Amarisoft UE and install as per steps provided in its install guide.

This tutorial uses version 2023-02-06 of Amarisoft UE, but it can be any version above 2021-09-18.

22.3.4 ZeroMQ driver for Amarisoft UE

Note: These steps should only be completed after compiling srsRAN Project gNB as mentioned above,
as they require the build files of srsRAN Project gNB and Amarisoft UHD RF frontend driver.

Interfacing the Amarisoft UE with srsRAN Project requires a custom TRX driver implemented by SRS,
which can be found in the srsRAN Project source files in srsRAN_Project/utils/trx_srsran.

The Amarisoft UE release folder, amarisoft.2023-02-06.tar.gz, should contain a file called
trx_uhd-linux-2023-02-06.tar.gz. The release folder and the sub-file in question should be un-
compressed before proceeding.

162 Chapter 22. srsRAN gNB with Amarisoft UE

srsRAN Project Documentation

First, the driver needs to be compiled, do this by running the following commands from
srsRAN_Project/build :

cmake ../ -DENABLE_EXPORT=TRUE -DENABLE_ZEROMQ=TRUE -DENABLE_TRX_DRIVER=TRUE -
→˓DTRX_DRIVER_DIR=<PATH TO trx_uhd-linux-2023-02-06>
make trx_srsran_test
ctest -R trx_srsran_test

Make sure CMake finds the file trx_driver.h in the specified folder. CMake should print the following:

-- Found trx_driver.h in TRX_DRIVER_DIR=/home/user/amarisoft/2021-03-15/trx_
→˓uhd-linux-2021-03-15/trx_driver.h

A symbolic link must be done for the UE application to load the driver. From the Amarisoft UE build
folder run the following command:

ln -s srsRAN_Project/build/utils/trx_srsran/libtrx_srsran.so trx_srsran.so

22.4 ZeroMQ-based Setup

In this section, we describe the steps required to configure the ZMQ-based RF driver in both gNB and
AmariUE. The following diagram presents the setup architecture:

22.4.1 Configuration

The following config files were modified to use ZMQ-based RF driver:

• gNB FDD band 7 config

• gNB TDD band 78 config

• Single UE config FDD band 7

• Single UE config TDD band 78

• Multiple UEs config FDD band 7

• Multiple UEs config TDD band 78

Details of the modifications made are outlined in following sections.

22.4. ZeroMQ-based Setup 163

srsRAN Project Documentation

srsRAN Project gNB

Modify the amf section with IP of AMF and IP to which gNB need to bind in order to connect to AMF:

amf:
addr: 172.22.0.10
bind_addr: 172.22.0.1

Modify the ru_sdr section with IPs from which gNB sends and receives radio samples via ZMQ driver:

ru_sdr:
device_driver: zmq
device_args: tx_port=tcp://10.53.1.1:5000,rx_port=tcp://10.53.1.2:6000

Amarisoft UE

Modify the ru_sdr section of Amarisoft UE configuration with IPs from which UE sends and receives
radio samples via ZMQ driver:

ru_sdr: {
name: "srsran",
args: "",
tx_port0: "tcp://10.53.1.2:6000",
rx_port0: "tcp://10.53.1.1:5000",
log_level: "info"

},

Then, set the gain parameters as follows:

tx_gain: 0,
rx_gain: 0,

Make sure the CELL_BANDWIDTH matches that on gNB configuration file:

#define CELL_BANDWIDTH 10

Add sample_rate: 61.44, in the cell entry under cells section:

sample_rate: 61.44,

Then, set N_ANTENNA_DL to 1:

#define N_ANTENNA_DL 1

Note that the following (default) SIM Credentials and APN are used:

sim_algo: "milenage",
imsi: "001019123456799",
K: "00112233445566778899aabbccddeeff",
opc: "63bfa50ee6523365ff14c1f45f88737d",
apn: "internet",

164 Chapter 22. srsRAN gNB with Amarisoft UE

srsRAN Project Documentation

Open5GS 5G Core

As highlighted above, the Open5GS Quickstart Guide provides a comprehensive overview of how to
configure Open5GS to run as a 5G Core.

The main modifications needed are:

• Change the TAC in the AMF config to 7

• Check that the NGAP, and GTPU addresses are all correct. This is done in the AMF and UPF
config files.

• It is also a good idea to make sure the PLMN values are consistent across all of the above files and
the UE config file.

The final step is to register the UE to the list of subscribers through the Open5GS WebUI. The values for
each field should match what is in the Amarisoft UE config file, under the ue_list section.

Note: Make sure to correctly configure the APN, if this is not done correctly the UE will not connect to
the internet.

It is important to run Amarisoft UE and 5G Core in different machine or at least in different network
namespaces. This is because both the 5GC and UE will be sharing the same network configuration, i.e.
routing tables etc. Because the UE receives an IP address from the 5GC’s subnet, the Linux kernel would
bypass the TUN interfaces when routing traffic between both ends.

22.4.2 Running the 5G Network

The following order should be used when running the network:

1. 5GC

2. gNB

3. UE

Open5gs 5G Core

Once the steps from the Open5GS Quickstart Guide are followed you do not need to do any more to bring
the core online. It will run in the background. Make sure to restart the relevant daemons after making
any changes to the config files.

srsRAN Project gNB

Run the gNB from its build directory, using the configuration file provided:

sudo ./apps/gnb/gnb -c gnb_rf_zmq_fdd_n7_10mhz.yml

The console output should be similar to the following:

22.4. ZeroMQ-based Setup 165

https://open5gs.org/open5gs/docs/guide/01-quickstart/

srsRAN Project Documentation

Available radio types: uhd and zmq.

--== srsRAN gNB (commit 05beac11e) ==--

Connecting to AMF on 172.22.0.10:38412
Cell pci=1, bw=10 MHz, dl_arfcn=536020 (n7), dl_freq=2680.1 MHz, dl_ssb_
→˓arfcn=535930, ul_freq=2560.1 MHz

==== gNodeB started ===
Type <t> to view trace

The Connecting to AMF on 172.22.0.10:38412message indicates that gNB initiated a connection
to the core.

If the connection attempt is successful, the following (or similar) will be displayed on the Open5GS
console:

amf | 04/23 14:38:26.459: [amf] INFO: gNB-N2 accepted[172.22.0.1]:49428␣
→˓in ng-path module (../src/amf/ngap-sctp.c:113)
amf | 04/23 14:38:26.459: [amf] INFO: gNB-N2 accepted[172.22.0.1] in␣
→˓master_sm module (../src/amf/amf-sm.c:741)
amf | 04/23 14:38:26.459: [amf] INFO: [Added] Number of gNBs is now 1 (..
→˓/src/amf/context.c:1178)
amf | 04/23 14:38:26.459: [amf] INFO: gNB-N2[172.22.0.1] max_num_of_
→˓ostreams : 30 (../src/amf/amf-sm.c:780)

Amarisoft UE

Lastly we can launch the UE, with root permissions to create the TUN device.

/root/ue/lteue /root/ue/config/ue-nr-sa-fdd-n7-zmq-single-ue.cfg

The above command should start the UE and attach it to the core network.

If UE connects successfully to the network, the following (or similar) should be displayed on the console:

amariue | RF0: sample_rate=61.440 MHz dl_freq=2680.100 MHz ul_freq=2560.100␣
→˓MHz (band n7) dl_ant=1 ul_ant=1
amariue | (ue) Cell 0: SIB found
amariue | UE PDN TUN iface requested: ue_id: ue1, pdn_id: 0, ifname: ue1-
→˓pdn0, ipv4_addr: 192.168.100.2, ipv4_dns: 8.8.4.4, ipv6_local_addr: , ipv6_
→˓dns:
amariue | Created iface ue1-pdn0 with 192.168.100.2

It is clear that the connection has been made successfully once the UE has been assigned an IP, this is
seen in PDU Session Establishment successful. IP: 192.168.100.2. The NR connection is
then confirmed with the RRC NR reconfiguration successful. message.

166 Chapter 22. srsRAN gNB with Amarisoft UE

srsRAN Project Documentation

22.4.3 Testing the Network

Here, we demonstrate how to use ping and iPerf3 tools to test the connectivity and throughput in the
network.

Ping

To exchange traffic in the downlink direction, i.e. from the the 5GC (UPF), just run ping as usual on the
command line, e.g.:

ping 192.168.100.2

In order to generate traffic in the uplink direction it is important to run the ping command using the
TUN interface of UE (e.g. tun0 created once Amarisoft UE attaches to 5G network).

ip netns exec ue0 ping 192.168.100.1 -I tun0

iPerf

Downlink

For generating downlink traffic, we run iPerf client on the 5GC (UPF) and server on the UE as follows:

In the UE,

ip netns exec ue0 iperf -u -s -i 1

In the UPF,

iperf -u -c 192.168.100.2 -b 5M -i 1 -t 30

Uplink

And, for uplink traffic, we run iPerf server on the 5GC (UPF) and client on the UE as follows.

In the UPF,

iperf -u -s -i 1

In the UE,

ip netns exec ue0 iperf -u -c 192.168.100.1 -b 5M -i 1 -t 30

22.4. ZeroMQ-based Setup 167

srsRAN Project Documentation

iPerf Output

Example server iPerf3 output:

--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 208 KByte (default)
--
[3] local 192.168.100.1 port 5001 connected with 192.168.100.3 port 36039
[ID] Interval Transfer Bandwidth Jitter Lost/Total␣
→˓Datagrams
[3] 0.0- 1.0 sec 629 KBytes 5.15 Mbits/sec 6.188 ms 0/ 438 (0%)
[3] 1.0- 2.0 sec 431 KBytes 3.53 Mbits/sec 2.656 ms 0/ 300 (0%)
[3] 2.0- 3.0 sec 866 KBytes 7.09 Mbits/sec 2.690 ms 0/ 603 (0%)
[3] 3.0- 4.0 sec 589 KBytes 4.82 Mbits/sec 8.544 ms 0/ 410 (0%)
[3] 4.0- 5.0 sec 693 KBytes 5.68 Mbits/sec 2.879 ms 0/ 483 (0%)
[3] 5.0- 6.0 sec 637 KBytes 5.22 Mbits/sec 2.583 ms 0/ 444 (0%)
[3] 6.0- 7.0 sec 500 KBytes 4.09 Mbits/sec 15.044 ms 0/ 348 (0%)
[3] 7.0- 8.0 sec 784 KBytes 6.42 Mbits/sec 2.792 ms 0/ 546 (0%)
[3] 8.0- 9.0 sec 637 KBytes 5.22 Mbits/sec 9.773 ms 0/ 444 (0%)
[3] 9.0-10.0 sec 600 KBytes 4.92 Mbits/sec 10.407 ms 0/ 418 (0%)
[3] 10.0-11.0 sec 683 KBytes 5.60 Mbits/sec 2.029 ms 0/ 476 (0%)
[3] 11.0-12.0 sec 637 KBytes 5.22 Mbits/sec 11.048 ms 0/ 444 (0%)
[3] 12.0-13.0 sec 643 KBytes 5.27 Mbits/sec 2.563 ms 0/ 448 (0%)
[3] 13.0-14.0 sec 626 KBytes 5.13 Mbits/sec 3.593 ms 0/ 436 (0%)
[3] 14.0-15.0 sec 593 KBytes 4.86 Mbits/sec 8.771 ms 0/ 413 (0%)
[3] 15.0-16.0 sec 669 KBytes 5.48 Mbits/sec 1.940 ms 0/ 466 (0%)
[3] 16.0-17.0 sec 501 KBytes 4.10 Mbits/sec 9.604 ms 0/ 349 (0%)
[3] 17.0-18.0 sec 813 KBytes 6.66 Mbits/sec 2.372 ms 0/ 566 (0%)
[3] 18.0-19.0 sec 637 KBytes 5.22 Mbits/sec 2.671 ms 0/ 444 (0%)
[3] 19.0-20.0 sec 632 KBytes 5.17 Mbits/sec 3.903 ms 0/ 440 (0%)
[3] 20.0-21.0 sec 606 KBytes 4.96 Mbits/sec 2.835 ms 0/ 422 (0%)
[3] 21.0-22.0 sec 678 KBytes 5.55 Mbits/sec 2.643 ms 0/ 472 (0%)
[3] 22.0-23.0 sec 649 KBytes 5.32 Mbits/sec 2.577 ms 0/ 452 (0%)
[3] 0.0-23.6 sec 14.7 MBytes 5.25 Mbits/sec 2.420 ms 0/10510 (0%)

Example client iPerf3 output:

--
Client connecting to 192.168.100.1, UDP port 5001
Sending 1470 byte datagrams, IPG target: 2243.04 us (kalman adjust)
UDP buffer size: 208 KByte (default)
--
[3] local 192.168.100.3 port 36039 connected with 192.168.100.1 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0- 1.0 sec 642 KBytes 5.26 Mbits/sec
[3] 1.0- 2.0 sec 640 KBytes 5.24 Mbits/sec
[3] 2.0- 3.0 sec 640 KBytes 5.24 Mbits/sec
[3] 3.0- 4.0 sec 640 KBytes 5.24 Mbits/sec
[3] 4.0- 5.0 sec 640 KBytes 5.24 Mbits/sec

(continues on next page)

168 Chapter 22. srsRAN gNB with Amarisoft UE

srsRAN Project Documentation

(continued from previous page)

[3] 5.0- 6.0 sec 639 KBytes 5.23 Mbits/sec
[3] 6.0- 7.0 sec 640 KBytes 5.24 Mbits/sec
[3] 7.0- 8.0 sec 640 KBytes 5.24 Mbits/sec
[3] 8.0- 9.0 sec 640 KBytes 5.24 Mbits/sec
[3] 9.0-10.0 sec 640 KBytes 5.24 Mbits/sec
[3] 10.0-11.0 sec 640 KBytes 5.24 Mbits/sec
[3] 11.0-12.0 sec 639 KBytes 5.23 Mbits/sec
[3] 12.0-13.0 sec 640 KBytes 5.24 Mbits/sec
[3] 13.0-14.0 sec 640 KBytes 5.24 Mbits/sec
[3] 14.0-15.0 sec 640 KBytes 5.24 Mbits/sec
[3] 15.0-16.0 sec 640 KBytes 5.24 Mbits/sec
[3] 16.0-17.0 sec 639 KBytes 5.23 Mbits/sec
[3] 17.0-18.0 sec 640 KBytes 5.24 Mbits/sec
[3] 18.0-19.0 sec 640 KBytes 5.24 Mbits/sec
[3] 19.0-20.0 sec 640 KBytes 5.24 Mbits/sec
[3] 20.0-21.0 sec 640 KBytes 5.24 Mbits/sec

gNB Console Output

Following console output was taken while performing UL iperf test:

-----------------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 15 27 5.8k 10 0 0% | 65.5 28 11M 396 0 0% ␣

→˓5.45k
1 4601 15 27 5.8k 9 0 0% | 65.5 28 5.7M 253 0 0% ␣

→˓10.6k
1 4601 15 27 5.2k 10 0 0% | 65.5 28 5.8M 247 0 0% ␣

→˓1.04k
1 4601 15 27 5.8k 10 0 0% | 65.5 28 8.2M 351 0 0% ␣

→˓ 0.0
1 4601 15 27 5.8k 10 0 0% | 65.5 28 6.4M 265 0 0% ␣

→˓5.45k
1 4601 15 27 5.8k 10 0 0% | 65.5 28 5.8M 255 0 0% ␣

→˓5.45k
1 4601 15 27 5.8k 10 0 0% | 65.5 28 5.0M 246 0 0% ␣

→˓108k
1 4601 15 27 5.8k 10 0 0% | 65.5 28 11M 412 0 0% ␣

→˓ 0.0
1 4601 15 27 5.8k 10 0 0% | 65.5 28 4.9M 234 0 0% ␣

→˓7.59k
1 4601 15 27 5.8k 10 0 0% | 65.5 28 9.3M 347 0 0% ␣

→˓10.6k
1 4601 15 27 5.8k 10 0 0% | 65.5 28 6.7M 278 0 0% ␣

→˓5.45k

22.4. ZeroMQ-based Setup 169

srsRAN Project Documentation

Packet Capture

• NGAP packet capture of UE attach scenario

22.4.4 Configuring Amarisoft for multiple UEs

The following config files were modified for simulating multiple UEs:

• Multiple UEs config FDD band 7

• Multiple UEs config TDD band 78

The main modifications needed are:

• Set multi_ue to true.

• Add multiple entries with UE details (IMSI, K, OPc etc.) under ue_list.

• Add global_timing_advance: 0 in the cell entry under cells section.

• Add the following configuration under each entry in ue_list and increase the value of
start_time for each UE to have a staggered UE bring up.

sim_events: [
{

event: "power_on",
start_time: 0,

},
]

Note: When multi_ue to false, make sure to have only one entry in ue_list.

Note: Make sure to configure all the subscribers through the Open5GS WebUI, before attempting to
attach UEs.

22.5 Over-the-air Setup

In this section, we describe the steps required to configure the SDR RF driver in both gNB and Amarisoft
UE. The following diagram presents the setup architecture:

170 Chapter 22. srsRAN gNB with Amarisoft UE

srsRAN Project Documentation

22.5.1 Configuration

You can find the srsRAN Project gNB configuration file for this example in the configs folder of the
srsRAN Project source files. You can also find it here.

• gNB TDD band 78 config

You can download the AmariUE configs here:

• Single UE config FDD band 7

• Single UE config TDD band 78

Details of the modifications made compared to ZMQ setup are outlined in following sections.

srsRAN Project gNB

Modify the ru_sdr section to send and receive radio samples via UHD driver:

ru_sdr:
device_driver: uhd
device_args: type=b200,num_recv_frames=64,num_send_frames=64
srate: 11.52
otw_format: sc12
tx_gain: 80
rx_gain: 40

Amarisoft UE

Modify the ru_sdr section of Amarisoft UE configuration to send and receive radio samples via UHD
driver:

ru_sdr: {
name: "uhd",
sync: "none",

#if CELL_BANDWIDTH < 5
args: "send_frame_size=512,recv_frame_size=512",

#elif CELL_BANDWIDTH == 5
args: "send_frame_size=1024,recv_frame_size=1024",

#elif CELL_BANDWIDTH == 10
args: "",

#elif CELL_BANDWIDTH > 10
args: "num_recv_frames=64,num_send_frames=64",
dl_sample_bits: 12,
ul_sample_bits: 12,

#endif
rx_antenna: "rx",

},

Then, set the gain parameters and timing offset as follows:

22.5. Over-the-air Setup 171

https://github.com/srsran/srsRAN_Project/tree/main/configs
https://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_rf_b200_tdd_n78_20mhz.yml

srsRAN Project Documentation

tx_gain: 75.0, /* TX gain (in dB) B2x0: 0 to 89.8 dB */
rx_gain: 40.0, /* RX gain (in dB) B2x0: 0 to 73 dB */
tx_time_offset: -150, /* in samples */

Make sure the CELL_BANDWIDTH matches that on gNB configuration file:

#define CELL_BANDWIDTH 10

Then, set N_ANTENNA_DL to 1:

#define N_ANTENNA_DL 1

22.5.2 Running the 5G Network

The following order should be used when running the network:

1. 5GC

2. gNB

3. UE

Open5gs 5G Core

Running the 5GC is same as in the ZMQ based setup.

srsRAN Project gNB

Let’s now launch the gNB from its build directory.

sudo ./apps/gnb/gnb -c gnb_rf_b210_tdd_n78_10mhz.yml

The console output should be similar as follows:

Available radio types: uhd and zmq.

--== srsRAN gNB (commit 87c3fe355) ==--

Connecting to AMF on 172.22.0.10:38412
[INFO] [UHD] linux; GNU C++ version 11.3.0; Boost_107400; UHD_4.4.0.0-
→˓0ubuntu1~jammy1
[INFO] [LOGGING] Fastpath logging disabled at runtime.
Making USRP object with args 'type=b200'
[INFO] [B200] Detected Device: B210
[INFO] [B200] Operating over USB 3.
[INFO] [B200] Initialize CODEC control...
[INFO] [B200] Initialize Radio control...
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Performing register loopback test...

(continues on next page)

172 Chapter 22. srsRAN gNB with Amarisoft UE

srsRAN Project Documentation

(continued from previous page)

[INFO] [B200] Register loopback test passed
[INFO] [B200] Setting master clock rate selection to 'automatic'.
[INFO] [B200] Asking for clock rate 16.000000 MHz...
[INFO] [B200] Actually got clock rate 16.000000 MHz.
[INFO] [MULTI_USRP] Setting master clock rate selection to 'manual'.
[INFO] [B200] Asking for clock rate 11.520000 MHz...
[INFO] [B200] Actually got clock rate 11.520000 MHz.
Cell pci=1, bw=10 MHz, dl_arfcn=632628 (n78), dl_freq=3489.42 MHz, dl_ssb_
→˓arfcn=632640, ul_freq=3489.42 MHz

==== gNodeB started ===
Type <t> to view trace

Amarisoft UE

Lastly we can launch the UE, with root permissions to create the TUN device.

/root/ue/lteue /root/ue/config/ue-nr-sa-tdd-n78-b210-single-ue.cfg

The above command should start the UE and attach it to the core network. If UE connects successfully
to the network, the following (or similar) should be displayed on the console:

[INFO] [UHD] linux; GNU C++ version 9.2.1 20200304; Boost_107100; UHD_3.15.0.
→˓0-2build5
[INFO] [MPMD FIND] Found MPM devices, but none are reachable for a UHD␣
→˓session. Specify find_all to find all devices.
[INFO] [B200] Detected Device: B210
[INFO] [B200] Operating over USB 3.
[INFO] [B200] Initialize CODEC control...
[INFO] [B200] Initialize Radio control...
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Setting master clock rate selection to 'automatic'.
[INFO] [B200] Asking for clock rate 16.000000 MHz...
[INFO] [B200] Actually got clock rate 16.000000 MHz.
[INFO] [MULTI_USRP] Setting master clock rate selection to 'manual'.
[INFO] [B200] Asking for clock rate 11.520000 MHz...
[INFO] [B200] Actually got clock rate 11.520000 MHz.
RF0: sample_rate=11.520 MHz dl_freq=3489.420 MHz ul_freq=3489.420 MHz (band␣
→˓n78) dl_ant=1 ul_ant=1
(ue) Warning: config/ru_sdr/config_tdd.cfg:25: unused property 'tx_time_offset
→˓'

[INFO] [MULTI_USRP] 1) catch time transition at pps edge
[INFO] [MULTI_USRP] 2) set times next pps (synchronously)
Chan Gain(dB) Freq(MHz)
TX1 70.0 3489.420000

(continues on next page)

22.5. Over-the-air Setup 173

srsRAN Project Documentation

(continued from previous page)

RX1 40.0 3489.420000
Cell 0: SIB found

And, once connected you can use the Amarisoft UE command line tool to verify whether its attached to
cell as follows:

(ue) cells
Cell #0 / NR:

PCI: 1
TDD: config=0, ssf=0
EARFCN: DL=632628 UL=632628
RB: DL=24 UL=24

It is clear that the connection has been made successfully once the UE has been assigned an IP, this is
seen in PDU Session Establishment successful. IP: 192.168.100.2. The NR connection is
then confirmed with the RRC NR reconfiguration successful. message.

22.5.3 Testing the Network

Here, we demonstrate how to use ping and iPerf3 tools to test the connectivity and throughput in the
network.

Ping

To exchange traffic in the downlink direction, i.e. from the the 5GC (UPF), just run ping as usual on the
command line, e.g.:

ping 192.168.100.2

In order to generate traffic in the uplink direction it is important to run the ping command using the
TUN interface of UE (e.g. tun0 created once Amarisoft UE attaches to 5G network).

ip netns exec ue0 ping 192.168.100.1 -I tun0

iPerf

For generating downlink traffic, we run iperf client on the 5GC (UPF) and server on the UE as follows:

In the UE,

ip netns exec ue0 iperf -u -s -i 1

In the UPF,

iperf -u -c 192.168.100.2 -b 10M -i 1 -t 60

And, for uplink traffic, we run iperf server on the 5GC (UPF) and client on the UE as follows.

In the UPF,

174 Chapter 22. srsRAN gNB with Amarisoft UE

srsRAN Project Documentation

iperf -u -s -i 1

In the UE,

ip netns exec ue0 iperf -u -c 192.168.100.1 -b 3M -i 1 -t 60

iPerf Output

Example server iPerf3 output:

--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 32.0 MByte (default)
--
[3] local 10.45.0.52 port 5001 connected with 10.45.0.1 port 33894
[ID] Interval Transfer Bandwidth Jitter Lost/Total␣
→˓Datagrams
[3] 0.0- 1.0 sec 1.25 MBytes 10.5 Mbits/sec 0.838 ms 0/ 893 (0%)
[3] 1.0- 2.0 sec 1.25 MBytes 10.5 Mbits/sec 0.909 ms 0/ 892 (0%)
[3] 2.0- 3.0 sec 1.25 MBytes 10.5 Mbits/sec 0.839 ms 0/ 891 (0%)
[3] 3.0- 4.0 sec 1.25 MBytes 10.5 Mbits/sec 0.905 ms 0/ 892 (0%)
[3] 4.0- 5.0 sec 1.25 MBytes 10.5 Mbits/sec 0.871 ms 3/ 892 (0.34%)
[3] 5.0- 6.0 sec 1.25 MBytes 10.5 Mbits/sec 0.878 ms 0/ 891 (0%)
[3] 6.0- 7.0 sec 1.25 MBytes 10.5 Mbits/sec 0.922 ms 0/ 892 (0%)
[3] 7.0- 8.0 sec 1.25 MBytes 10.5 Mbits/sec 0.921 ms 0/ 892 (0%)
[3] 8.0- 9.0 sec 1.25 MBytes 10.5 Mbits/sec 0.842 ms 0/ 891 (0%)
[3] 0.0-10.0 sec 12.5 MBytes 10.5 Mbits/sec 0.932 ms 3/ 8917 (0.034
→˓%)

Example client iPerf3 output:

--
Client connecting to 10.45.0.52, UDP port 5001
Sending 1470 byte datagrams, IPG target: 1121.52 us (kalman adjust)
UDP buffer size: 32.0 MByte (default)
--
[3] local 10.45.0.1 port 33894 connected with 10.45.0.52 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0- 1.0 sec 1.25 MBytes 10.5 Mbits/sec
[3] 1.0- 2.0 sec 1.25 MBytes 10.5 Mbits/sec
[3] 2.0- 3.0 sec 1.25 MBytes 10.5 Mbits/sec
[3] 3.0- 4.0 sec 1.25 MBytes 10.5 Mbits/sec
[3] 4.0- 5.0 sec 1.25 MBytes 10.5 Mbits/sec
[3] 5.0- 6.0 sec 1.25 MBytes 10.5 Mbits/sec
[3] 6.0- 7.0 sec 1.25 MBytes 10.5 Mbits/sec
[3] 7.0- 8.0 sec 1.25 MBytes 10.5 Mbits/sec
[3] 8.0- 9.0 sec 1.25 MBytes 10.5 Mbits/sec
[3] 0.0-10.0 sec 12.5 MBytes 10.5 Mbits/sec
[3] Sent 8917 datagrams

(continues on next page)

22.5. Over-the-air Setup 175

srsRAN Project Documentation

(continued from previous page)

[3] Server Report:
[3] 0.0-10.0 sec 12.5 MBytes 10.5 Mbits/sec 0.931 ms 3/ 8917 (0.034
→˓%)

gNB Console Output

Following console output was taken while performing DL iperf test:

-----------------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 4 0 0 0 0 0% | -21.3 0 3.0k 0 5 0% ␣

→˓ 0.0
1 4602 15 28 11M 973 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 4 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4602 15 28 11M 976 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 4 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4602 15 28 11M 976 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 4 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4602 15 28 11M 973 9 0% | 27.4 28 4.4k 1 0 0% ␣

→˓ 0.0
1 4601 4 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4602 15 28 11M 973 1 0% | 28.5 28 4.4k 1 0 0% ␣

→˓ 0.0
1 4601 4 0 0 0 0 0% | -21.0 0 3.0k 0 5 0% ␣

→˓ 0.0
1 4602 15 28 11M 980 0 0% | 30.3 28 4.4k 1 0 0% ␣

→˓ 0.0
1 4601 4 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4602 15 28 11M 972 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 4 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4602 15 28 11M 976 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4601 4 0 0 0 0 0% | n/a 0 0 0 0 0% ␣

→˓ 0.0
1 4602 15 28 8.1M 732 0 0% | 25.9 28 414k 43 4 8% ␣

→˓ 0.0

176 Chapter 22. srsRAN gNB with Amarisoft UE

srsRAN Project Documentation

Packet Capture

• NGAP packet capture of UE attach scenario

22.6 Troubleshooting

22.6.1 ZMQ setup

Amarisoft UE in ZMQ based setup may not connect to srsRAN Project gNB if the time between gNB
bring up and UE bring up too large. So its advised to run immediately after running gNB for better
results.

22.6.2 Reference clock for over-the-air

If you encounter issues with the srsUE not finding the cell and/or not being able to stay connected it
might be due to inaccurate clocks at the RF frontends. Try to use an external 10 MHz reference or use a
GPSDO oscillator.

22.6.3 5G QoS Identifier

By default, Open5GS uses 5QI = 9. If the qos section is not provided in the gNB config file, the default
one with 5QI = 9 will be generated and the UE should connect to the network. If one needs to change the
5QI, please harmonize these settings between gNB and Open5GS config files, as otherwise, a UE will
not be able to connect.

22.6. Troubleshooting 177

CHAPTER

TWENTYTHREE

SRSRAN GNB ON KUBERNETES

23.1 Introduction

This tutorial outlines the steps required to launch the srsRAN CU/DU with Kubernetes. This is a useful
tool for use-cases that require users to deploy and manage networks over a prolonged period, with high
levels of guaranteed service ability and enhanced fault tolerance.

In short, Kubernetes can be described as the following:

When it comes to managing test networks, the adoption of Kubernetes is pivotal for stream-
lined and efficient operations. Kubernetes provides a unified platform for orchestrating di-
verse functions within the network, optimizing resource utilization, and automating scaling
based on demand. Its inherent capability to enhance fault tolerance ensures consistent ser-
vice availability, while the ease of continuous deployment supports rapid innovation. Ku-
bernetes also excels in simplifying the deployment process across various environments,
fostering adaptability. In essence, Kubernetes emerges as a practical solution, offering a
cohesive and scalable framework for effective network function management.

Such deployments may not be suited to more research and development focused use-cases that require
fine-tuning of configuration files and development of source-code. Iterative development and testing is
more suited to “bare metal” deployments.

23.1.1 Further Reading

We recommend unexperienced users read the following two articles before starting with this tutorial:

• Getting started with Kubernetes

• Getting started with Helm

178

https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://helm.sh/docs/intro/

srsRAN Project Documentation

23.2 Setup Considerations

This tutorial uses the following hardware:

• Server (Running srsRAN Project CU/DU)

– CPU: AMD Ryzen 7 5700G

– MEM: 64GB

– NIC: Intel Corporation 82599ES 10-Gigabit

– OS: Ubuntu 22.04 (5.15.0-1037-realtime)

• Falcon-RX/812/G xHaul Switch (w/ PTP grandmaster)

• Foxconn RPQN-7800E (v3.1.13q.551p1)

• COTS UE

This tutorial requires a functional Kubernetes cluster v1.24 or newer. We are using Ubuntu 22.04 on the
worker node. If you chose to use another operating system, please refer to the operating system specific
documentation for the installation of Kubernetes and configuration of the system. As previously stated,
this tutorial requires a basic understanding of Kubernetes and Helm.

23.2.1 CU/DU

The CU/DU is provided by the srsRAN Project gNB. The Open Fronthaul (OFH) Library provides the
necessary interface between the DU and the RU. The DU is connected to the Falcon switch via SFP+
fiber cable.

23.2. Setup Considerations 179

srsRAN Project Documentation

23.2.2 RU

The Foxconn RPQN-7800E RU is used as the RU in this setup. This is a Split 7.2x indoor O-RU. The
RU is connected to the Falcon-RX via SFP+ fiber cable through the main fronthaul interface.

23.2.3 5G Core

For this tutorial we use the Open5GS 5G Core.

Open5GS is a C-language open-source implementation for 5G Core and EPC. The following links will
provide you with the information needed to download and setup Open5GS so that it is ready to use with
srsRAN:

• Open5GS GitHub

• Open5GS Quickstart Guide

23.2.4 Clocking & Synchronization

The split 7.2 interface requires tight timing synchronization between the DU and RU. O-RAN WG 4
has defined various synchronization methods for use with Open Fronthaul. These are outlined in O-
RAN.WG4.CUS.0-R003-v11.00 Section 11.

In this setup we use LLS-C3. The LLS-C3 configuration enables the distribution of network timing
between central sites and remote sites from PRTC/T-GM to RU. In simpler terms, it allows the syn-
chronization of one or more PRTC/T-GM devices (serving as PTP masters) in the fronthaul network to
transmit network timing signals to DU and RU components as seen in the figure above. In our setup the
Falcon switch is acting as the PTP grandmaster (which is synchronized via GPS), providing timing to the
RU and the DU. These are connected to the SFP+ 10G ports on the switch via Ethernet.

Switch

The Falcon-RX/812/G switch is a 5G xHaul timing-aware O-RAN switch & PTP grandmaster. This is
used to provide timing synchronization to both the DU and RU.

23.3 Configuration

23.3.1 Kubernetes Worker Node

In this section we will cover the configuration of the Kubernetes worker node.

180 Chapter 23. srsRAN gNB on Kubernetes

https://github.com/open5gs/open5gs
https://open5gs.org/open5gs/docs/guide/01-quickstart/

srsRAN Project Documentation

NIC Configuration

The NIC used for OFH traffic needs to support jumbo frames. In our example the NIC port has the name
eth0. To configure the MTU to 9600, use the following command:

ifconfig eth0 mtu 9600 up

Depending on the network configuration you we advice to use DPDK. For 2x2 MIMO DPDK is not
required, while for 4x4 MIMO DPDK is recommended. This tutorial will cover configuration for a 2x2
MIMO set up.

A tutorial outlining the use of DPDK with srsRAN will be available soon.

23.3.2 PTP Grandmaster

In this tutorial we will be using the Falcon-RX/812/G switch as the PTP grandmaster in a LLS-C3 con-
figuration. The switch is synchronized via GPS. The switch is connected to the DU and RU via SFP+
fiber cable.

For more information on configuring the Falcon xHaul switch, see this section of the RU tutorial.

23.3.3 Helm Charts

Install the srsRAN Helm repositories with the following command:

helm repo add srsran https://srsran.github.io/srsRAN_Project_helm/

To deploy Open5GS on Kubernetes we use the Helm charts from the Openverso Project. Install the
Openverso Helm repository with the following command:

helm repo add openverso https://gradiant.github.io/openverso-charts/

LinuxPTP Helm Chart

Download and adjust the LinuxPTP values.yaml file to configure the deployment based on your cluster.
For more information on the explicit configuration of the LinuxPTP container, have look at the LinuxPTP
Documentation.

wget https://raw.githubusercontent.com/srsran/srsRAN_Project_helm/main/charts/
→˓linuxptp/values.yaml

In this tutorial we will be using the G.8275.1 profile with the default configuration of LinuxPTP. There-
fore, we adjust the config section of the values.yaml file as follows:

config:
dataset_comparison: "G.8275.x"
G.8275.defaultDS.localPriority: "128"
maxStepsRemoved: "255"
logAnnounceInterval: "-3"
logSyncInterval: "-4"

(continues on next page)

23.3. Configuration 181

https://github.com/Gradiant/openverso-charts
https://linuxptp.nwtime.org/documentation/default/
https://linuxptp.nwtime.org/documentation/default/

srsRAN Project Documentation

(continued from previous page)

logMinDelayReqInterval: "-4"
serverOnly: "0"
G.8275.portDS.localPriority: "128"
ptp_dst_mac: "01:80:C2:00:00:0E"
network_transport: "L2"
domainNumber: "24"

Apart from that, we need to set the interface_name parameter to the interface name of the NIC used
for the PTP traffic.

For more information on the parameters of the values.yaml file refer to charts/linuxptp/README.
md in this repository.

Docker images are available on Docker Hub. The Dockerfile for the LinuxPTP container can be found
in images/linuxptp in this repository.

srsRAN Project Helm Chart

Download and adjust the srsRAN Project values.yaml file to configure the deployment based on your
cluster. For more information on the explicit configuration of the srsRAN CU/DU for various RUs, see
this tutorial.

wget https://raw.githubusercontent.com/srsran/srsRAN_Project_helm/main/charts/
→˓srsran-project/values.yaml

One of the necessary parameters to configure are bind_addr and amf_addr. bind_addr is the IP
address of the Kubernetes worker node. The amf_addr is the IP address of the Open5GS AMF. Obtain
the IP address of the Kubernetes worker node with the following command:

kubectl get nodes -o wide

You should see an output similar to the following:

$ kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-
→˓IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
preskit-1 Ready control-plane 52d v1.26.5 10.12.1.223 <none> ␣
→˓ Ubuntu 22.04.3 LTS 5.15.0-1032-realtime containerd://1.7.1

Set bind_addr to the INTERNAL-IP value of the Kubernetes worker node where you want to deploy the
srsRAN Project CU/DU. Obtain the IP address of the Open5GS AMF with the following command:

kubectl get pods -A -o wide

You should see an output similar to the following:

$ kubectl get pods -A -o wide
NAME READY STATUS RESTARTS ␣
→˓AGE IP NODE NOMINATED NODE READINESS GATES
open5gs-amf-9d5788cdc-qhzkb 1/1 Running 0 ␣
→˓18m 10.233.124.24 preskit-1 <none> <none>

(continues on next page)

182 Chapter 23. srsRAN gNB on Kubernetes

https://github.com/srsran/srsRAN_Project_helm/tree/main/charts/linuxptp
https://hub.docker.com/u/softwareradiosystems
https://github.com/srsran/srsRAN_Project_helm/tree/main/images

srsRAN Project Documentation

(continued from previous page)

open5gs-ausf-66547fc8bd-4p4r5 1/1 Running 0 ␣
→˓18m 10.233.124.51 preskit-1 <none> <none>
open5gs-bsf-59966bf9cb-rz262 1/1 Running 0 ␣
→˓18m 10.233.124.59 preskit-1 <none> <none>
open5gs-mongodb-749b78fd9f-v96gg 1/1 Running 0 ␣
→˓18m 10.233.124.4 preskit-1 <none> <none>
open5gs-nrf-7995d7c5bf-rxh7s 1/1 Running 0 ␣
→˓18m 10.233.124.15 preskit-1 <none> <none>
open5gs-nssf-86c9f9d5cd-97lr6 1/1 Running 0 ␣
→˓18m 10.233.124.17 preskit-1 <none> <none>
open5gs-pcf-74c8468bcc-jwn7s 1/1 Running 2 (18m ago) ␣
→˓18m 10.233.124.26 preskit-1 <none> <none>
open5gs-populate-6444478f56-kb8cd 1/1 Running 0 ␣
→˓18m 10.233.124.55 preskit-1 <none> <none>
open5gs-smf-779bc766ff-gcps9 1/1 Running 0 ␣
→˓18m 10.233.124.11 preskit-1 <none> <none>
open5gs-udm-5ffc6fc456-9g9n2 1/1 Running 0 ␣
→˓18m 10.233.124.30 preskit-1 <none> <none>
open5gs-udr-7b5499cd89-2kb8l 1/1 Running 2 (18m ago) ␣
→˓18m 10.233.124.58 preskit-1 <none> <none>
open5gs-upf-796655fbcc-5sd6s 1/1 Running 0 ␣
→˓18m 10.233.124.19 preskit-1 <none> <none>
open5gs-webui-c6c949568-fp2r9 1/1 Running 0 ␣
→˓18m 10.233.124.1 preskit-1 <none> <none>

Search for a Pod called open5gs-amf-* and set amf_addr to the IP value of the Pod.

For more information on the configuration of the CU/DU please refer to the srsRAN gNB with COTS
UEs Tutorial. For more information on the parameters of the values.yaml file refer to charts/
srsran-project/README.md in this repository.

Docker images are available on Docker Hub. Dockerfiles for the srsRAN Project container can be found
in images/srsran-project in this repository.

A detailed breakdown on connecting the CU/DU to open5GS can be found in this tutorial.

Core

Download and adjust the following Open5GS values.yaml file to configure the deployment based on
your needs.

wget https://gradiant.github.io/openverso-charts/docs/open5gs-ueransim-gnb/
→˓5gSA-values.yaml

For information on the initCommands section to insert subscribers please refer to this file. For the
Open5GS configuration, please refer to the Open5GS Documentation.

23.3. Configuration 183

https://docs.srsran.com/projects/project/en/latest/tutorials/source/cotsUE/source/index.html#setup-considerations
https://docs.srsran.com/projects/project/en/latest/tutorials/source/cotsUE/source/index.html#setup-considerations
https://github.com/srsran/srsRAN_Project_helm/tree/main/charts/srsran-project
https://hub.docker.com/u/softwareradiosystems
https://github.com/srsran/srsRAN_Project_helm/tree/main/images
https://github.com/open5gs/open5gs/blob/main/misc/db/open5gs-dbctl
https://open5gs.org/open5gs/docs/

srsRAN Project Documentation

23.4 Initializing the Network

23.4.1 RU

Bring up the RU and ensure it is running correctly before attempting to connect the DU.

23.4.2 Core

By default the MongoDB helm chart involved in this deployment uses persistent volumes through a
persistent volume claim. In this example we will deploy Open5GS without persistent storage for the sake
of simplicity. That means that the user database will be reset when you restart the MongoDB container. If
you want to have persistent storage for MongoDB you need to configure a PV provisioner like OpenEBS.

Obtain and configure the values.yaml file like described above. After that, deploy Open5GS with the
following command:

helm install open5gs openverso/open5gs --version 2.0.8 --values=5gSA-values.
→˓yaml -n open5gs --create-namespace --set mongodb.persistence.enabled=false

You should see the following output:

NAME: open5gs
LAST DEPLOYED: Tue Nov 21 16:55:12 2023
NAMESPACE: open5gs
STATUS: deployed
REVISION: 1
TEST SUITE: None

Wait until all Pods are running. You can check the status with the following command:

kubectl get pods -n open5gs

Once all components are started you can edit the subscribers via the webui. For that, you need to forward
port 3000 of the open5gs-webui service to your local machine:

kubectl port-forward svc/open5gs-webui 3000:3000 -n open5gs

You should see the following output:

Forwarding from 127.0.0.1:3000 -> 3000
Forwarding from [::1]:3000 -> 3000

Don’t close the shell and open your browser at http://localhost:3000. Username: admin, Password:
1423 Once you are logged in you can edit the subscribers.

184 Chapter 23. srsRAN gNB on Kubernetes

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://openebs.io
http://localhost:3000

srsRAN Project Documentation

23.4.3 DU

PTP

Obtain and configure the values.yaml file like described above. After that, deploy LinuxPTP container
with the following command:

helm install linuxptp srsran/linuxptp --values=values.yaml -n ptp --create-
→˓namespace

You should see the following output:

NAME: linuxptp
LAST DEPLOYED: Tue Nov 21 16:53:36 2023
NAMESPACE: ptp
STATUS: deployed
REVISION: 1
TEST SUITE: None

To verify that the deployment is working properly we need to get the name of our LinuxPTP Pod. There-
fore, use kubectl get pods -A to list all Pods in the cluster. You should see an output similar to the
following:

NAMESPACE NAME READY STATUS ␣
→˓RESTARTS AGE
ptp linuxptp-854f797f64-vnmdt 1/1 Running 0␣
→˓ 23d
kube-system calico-kube-controllers-6dfcdfb99-xmdmx 1/1 Running 0␣
→˓ 22d
kube-system calico-node-292sr 1/1 Running 0␣
→˓ 23d
kube-system coredns-645b46f4b6-lggfs 1/1 Running 0␣
→˓ 22d
kube-system dns-autoscaler-756ff885f8-7d6hr 1/1 Running 0␣
→˓ 22d
kube-system kube-apiserver-preskit-1 1/1 Running 0␣
→˓ 22d
kube-system kube-controller-manager-preskit-1 1/1 Running 0␣
→˓ 22d
kube-system kube-proxy-5mbbm 1/1 Running 0␣
→˓ 23d
kube-system kube-scheduler-preskit-1 1/1 Running 0␣
→˓ 22d
kube-system nodelocaldns-bfx77 1/1 Running 0␣
→˓ 23d

The name of the Pod in our example is linuxptp-854f797f64-vnmdt. Now we can get logs from that
Pod with this command:

kubectl logs linuxptp-854f797f64-vnmdt -n srsran

You should see an output similar to the following:

23.4. Initializing the Network 185

srsRAN Project Documentation

ptp4l[1328454.803]: rms 15 max 24 freq -3622 +/- 19 delay 135 +/- 1
phc2sys[1328454.902]: CLOCK_REALTIME phc offset -4 s2 freq +2045␣
→˓delay 431
phc2sys[1328455.027]: CLOCK_REALTIME phc offset -7 s2 freq +2040␣
→˓delay 429
phc2sys[1328455.152]: CLOCK_REALTIME phc offset 11 s2 freq +2056␣
→˓delay 437
phc2sys[1328455.278]: CLOCK_REALTIME phc offset -1 s2 freq +2048␣
→˓delay 431
phc2sys[1328455.403]: CLOCK_REALTIME phc offset -1 s2 freq +2047␣
→˓delay 431
phc2sys[1328455.528]: CLOCK_REALTIME phc offset 6 s2 freq +2054␣
→˓delay 429
phc2sys[1328455.653]: CLOCK_REALTIME phc offset -11 s2 freq +2039␣
→˓delay 430
phc2sys[1328455.778]: CLOCK_REALTIME phc offset -9 s2 freq +2037␣
→˓delay 422
ptp4l[1328455.803]: rms 17 max 32 freq -3622 +/- 21 delay 135 +/- 2
phc2sys[1328455.903]: CLOCK_REALTIME phc offset -7 s2 freq +2037␣
→˓delay 430
phc2sys[1328456.028]: CLOCK_REALTIME phc offset 7 s2 freq +2049␣
→˓delay 430
phc2sys[1328456.154]: CLOCK_REALTIME phc offset -6 s2 freq +2038␣
→˓delay 431
phc2sys[1328456.279]: CLOCK_REALTIME phc offset 11 s2 freq +2053␣
→˓delay 430
phc2sys[1328456.404]: CLOCK_REALTIME phc offset -1 s2 freq +2044␣
→˓delay 431
phc2sys[1328456.529]: CLOCK_REALTIME phc offset 1 s2 freq +2046␣
→˓delay 430
phc2sys[1328456.654]: CLOCK_REALTIME phc offset 1 s2 freq +2046␣
→˓delay 430
phc2sys[1328456.779]: CLOCK_REALTIME phc offset 2 s2 freq +2048␣
→˓delay 430

CU/DU

Obtain and configure the values.yaml file like described above. PTP sync needs to be established on
RU and DU, and the Kubernetes worker node needs to be configured before the deployment. Furthermore,
the 5G core must be up and running.

Deploy the srsRAN Project with the following commands:

helm install srsran-project srsran/srsran-cu-du --values=values.yaml -n␣
→˓srsran --create-namespace

You should see the following output:

NAME: srsran-project
LAST DEPLOYED: Tue Nov 21 16:54:12 2023

(continues on next page)

186 Chapter 23. srsRAN gNB on Kubernetes

srsRAN Project Documentation

(continued from previous page)

NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

To verify that the srsRAN Project Pod is working properly you can extract logs using the following steps:

1. First get the name of the Pod

kubectl get pods -A

You should see an output similar to the following:

NAMESPACE NAME READY STATUS ␣
→˓ RESTARTS AGE
default srsran-project-l647c 1/1 Running␣
→˓ 0 23d
kube-system calico-kube-controllers-6dfcdfb99-xmdmx 1/1 Running␣
→˓ 0 22d
kube-system calico-node-292sr 1/1 Running␣
→˓ 0 23d
kube-system coredns-645b46f4b6-lggfs 1/1 Running␣
→˓ 0 22d
kube-system dns-autoscaler-756ff885f8-7d6hr 1/1 Running␣
→˓ 0 22d
kube-system kube-apiserver-preskit-1 1/1 Running␣
→˓ 0 22d
kube-system kube-controller-manager-preskit-1 1/1 Running␣
→˓ 0 22d
kube-system kube-proxy-5mbbm 1/1 Running␣
→˓ 0 23d
kube-system kube-scheduler-preskit-1 1/1 Running␣
→˓ 0 22d
kube-system nodelocaldns-bfx77 1/1 Running␣
→˓ 0 23d

2. Find the Pod, in this example it is srsran-project-l647c. The logs can now be extracted with:

kubectl logs srsran-project-l647c -n srsran

You should see an output similar to the following:

EAL: Detected CPU lcores: 16
EAL: Detected NUMA nodes: 1
EAL: Detected shared linkage of DPDK
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: VFIO support initialized
EAL: Probe PCI driver: net_ice (8086:159b) device: 0000:01:00.1 (socket 0)
ice_load_pkg(): failed to search file path

(continues on next page)

23.4. Initializing the Network 187

srsRAN Project Documentation

(continued from previous page)

ice_dev_init(): Failed to load the DDP package,Entering Safe Mode
TELEMETRY: No legacy callbacks, legacy socket not created

--== srsRAN gNB (commit 374200dee) ==--

Connecting to AMF on 10.44.50.221:38412
Initializing Open Fronthaul Interface sector=0: ul_comp=[BFP,9], dl_
→˓comp=[BFP,9], prach_comp=[BFP,9] prach_cp_enabled=true, downlink_
→˓broadcast=false.
ice_init_rss(): RSS is not supported in safe mode

ice_set_rx_function(): Using AVX512 Vector Scattered Rx (port 0).
ice_set_tx_function(): Using AVX512 Vector Tx (port 0).
ice_vsi_config_outer_vlan_stripping(): Single VLAN mode (SVM) does not␣
→˓support qinq
Cell pci=1, bw=40 MHz, dl_arfcn=649980 (n78), dl_freq=3749.7 MHz, dl_ssb_
→˓arfcn=649248, ul_freq=3749.7 MHz

==== gNodeB started ===
Type <t> to view trace

23.5 Connecting to the Network

Once the network has been configured and is running, connecting the UE to the network is the same as
in a bare-metal set-up.

The UE does not require any further modification or configuration outside of the normally required steps.
You can follow the COTS UE tutorial to learn how to connect a COTS UE to the network. From the UEs
perspective, it does not matter if an RU or USRP is being used as the frontend or if the CU/DU and 5GC
are running on bare-metal or in Kubernetes containers.

23.6 Supported O-RUs

For more information on supported O-RUs, see this section of the RU tutorial.

188 Chapter 23. srsRAN gNB on Kubernetes

CHAPTER

TWENTYFOUR

SRSRAN GNB WITH DPDK

Note: This tutorial assumes the machine being used has an Intel processor. For AMD processors some
of the commands used will change. The overall steps will remain mostly the same.

24.1 Introduction

This tutorial outlines how to configure DPDK for use with the srsRAN CU/DU.

DPDK, which stands for Data Plane Development Kit, is a set of software libraries and drivers that is
used to improve the performance of packet processing in the CU/DU.

Specifically, in the case of the srsRAN CU/DU, this can enable users to achieve higher throughput and a
more stable performance with certain configurations. For instance, usecases that require users to run an
O-RU in a 4x4 MIMO configuration can greatly benefit from using DPDK.

24.1.1 Further Reading

• DPDK Build Guide

• Linux Drivers

• Using Hugepages in a Linux Environment

• Running Hugepages

• EAL Parameters

24.2 Installing DPDK

Note: In this tutorial we will use vfio-pci but you can also use igb_uio or uio_pci_generic. For
more information on the drivers please refer to this document.

As mentioned in the DPDK documentation:

189

https://www.dpdk.org/about/
https://doc.dpdk.org/guides/linux_gsg/build_dpdk.html
https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html
https://doc.dpdk.org/guides/linux_gsg/sys_reqs.html#use-of-hugepages-in-the-linux-environment
https://doc.dpdk.org/guides/tools/hugepages.html
https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html
https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html

srsRAN Project Documentation

VFIO kernel is usually present by default in all distributions, however please consult your
distributions documentation to make sure that is the case.

To make use of full VFIO functionality, both kernel and BIOS must support and be configured
to use IO virtualization (such as Intel® VT-d).

Please make sure that your system meets the above requirements before continuing. In case your system
doesn’t meet the requirements you can continue with the igb_uio module, as described in the DPDK
documentation.

First install the following requirements:

sudo apt install build-essential tar wget python3-pip libnuma-dev meson ninja-
→˓build python3-pyelftools

It is recommended to use DPDK 23.11 with srsRAN CU/DU. This can be installed with the following
commands:

wget https://fast.dpdk.org/rel/dpdk-23.11.tar.xz
tar xvf dpdk-23.11.tar.xz dpdk-23.11/
cd dpdk-23.11/
meson setup build
cd build
ninja
sudo meson install
sudo ldconfig

In order to use the vfio-pci module, we need to enable IOMMU in the BIOS. This is usually done by
default, but should still be checked. Furthermore, IOMMU needs to be activated in the kernel. Depending
on your CPU, you may need to add intel_iommu=on iommu=pt for Intel CPUs or amd_iommu=on
iommu=pt for AMD CPUs to the GRUB_CMDLINE_LINUX_DEFAULT line in /etc/default/grub. After
this, update grub and reboot the system:

sudo update-grub
sudo reboot

The next step is to ensure the vfio-pci module is loaded correctly. This can be done with the following
command:

sudo modprobe vfio-pci

Verify that vfio-pci was loaded correctly with the following command:

sudo ./usertools/dpdk-devbind.py -s

You should see an output similar to the following:

Network devices using DPDK-compatible driver
==

Network devices using kernel driver
===================================
0000:01:00.0 '82599ES 10-Gigabit SFI/SFP+ Network Connection 10fb'␣

(continues on next page)

190 Chapter 24. srsRAN gNB with DPDK

https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html
https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html

srsRAN Project Documentation

(continued from previous page)

→˓if=enp1s0f0 drv=ixgbe unused=igb_uio,vfio-pci *Active*
0000:01:00.1 '82599ES 10-Gigabit SFI/SFP+ Network Connection 10fb'␣
→˓if=enp1s0f1 drv=ixgbe unused=igb_uio,vfio-pci *Active*
0000:05:00.0 'Ethernet Controller E810-XXV for SFP 159b' if=enp5s0f0 drv=ice␣
→˓unused=igb_uio,vfio-pci *Active*
0000:05:00.1 'Ethernet Controller E810-XXV for SFP 159b' if=enp5s0f1 drv=ice␣
→˓unused=igb_uio,vfio-pci *Active*
0000:09:00.0 'RTL8125 2.5GbE Controller 8125' if=enp9s0 drv=r8169 unused=igb_
→˓uio,vfio-pci

unused=vfio-pci *Active* confirms that the vfio_pci module was loaded correctly.

If the vfio-pci module is not present, it can have multiple issues which are out of scope of this tutorial.
Please refer to your OS maintainer’s or CPU vendor’s documentation for more information if this is the
case.

You can continue with the igb_uio module, as described below if necessary.

Warning: Only do this if you were unable to correctly load the vfio_pci module.

You can install and load igb_uio with the following commands:

git clone http://dpdk.org/git/dpdk-kmods
cd dpdk-kmods/linux/igb_uio
make
sudo modprobe uio # Ensure uio module is loaded
sudo insmod igb_uio.ko

Ensure that the module was loaded correctly with the following command:

lsmod | grep uio

You should see an output similar to the following:

igb_uio 36864 0
uio 24576 1 igb_uio

If the module is not present use dmesg to check for potential errors:

sudo dmesg -T

For more information and troubleshooting tips please refer to back to the DPDK documentation and that
of your OS maintainers.

24.2. Installing DPDK 191

srsRAN Project Documentation

24.3 Configuring DPDK

24.3.1 Configure Hugepages

DPDK requires hugepages to be configured to run correctly. THe dpdk-hugepages.py helper script
can be used to configure this correctly:

sudo ./dpdk-hugepages.py -p 1G --setup 8G

To make these changes persistent across boot-cycles, run the following:

sudo mkdir -p /mnt/huge

Then add the following line at the end of /etc/fstab:

nodev /mnt/huge hugetlbfs pagesize=1G 0 0

and edit this line in /etc/default/grub:

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash intel_iommu=on iommu=pt␣
→˓hugepagesz=1G hugepages=8 hugepagesz=2M hugepages=0 default_hugepagesz=1G"

After that, update the grub config and reboot the system:

sudo update-grub
sudo reboot

After reboot verify that the hugepages are configured correctly with the following commands:

cat /proc/cmdline
cat /proc/meminfo

You should see an output similar to the following:

cat /proc/cmdline

BOOT_IMAGE=/vmlinuz-5.15.0-1037-realtime root=/dev/mapper/ubuntu--vg-ubuntu--
→˓lv quiet splash intel_iommu=on iommu=pt hugepagesz=1G hugepages=8␣
→˓hugepagesz=2M hugepages=0 default_hugepagesz=1G

cat /proc/meminfo

[...]
HugePages_Total: 8
HugePages_Free: 8
HugePages_Rsvd: 0
HugePages_Surp: 0
[...]

Once the driver and hugepages are set up successfully the desired interface can then be bound to DPDK.

192 Chapter 24. srsRAN gNB with DPDK

srsRAN Project Documentation

24.3.2 Binding to DPDK

We use dpdk-devbind.py helper script to find interface name and bus ID:

sudo ./dpdk-devbind.py -s

You should see the following output or similar:

Network devices using kernel driver
===================================
0000:01:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection 10fb if=enp1s0f0␣
→˓drv=ixgbe unused=igb_uio,vfio-pci,uio_pci_generic
0000:01:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection 10fb if=enp1s0f1␣
→˓drv=ixgbe unused=igb_uio,vfio-pci,uio_pci_generic
0000:03:00.0 RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller 8168␣
→˓if=enp3s0 drv=r8169 unused=igb_uio,vfio-pci,uio_pci_generic *Active*

The network card we want to use is 82599ES 10-Gigabit SFI/SFP+ Network Connection, port 1.
Interface name enp1s0f1, bus ID 0000:01:00.1. The next step is to bind the desired port to vfio-pci.
Some NICs require deactivating the interface before binding. Use the following commands to achieve
this:

sudo ifconfig enp1s0f1 down
sudo ./dpdk-devbind.py --bind vfio-pci 0000:01:00.1

To test that the device has been bound successfully the following command can be used:

sudo ./dpdk-devbind.py -s

You should see the following output, or similar:

Network devices using DPDK-compatible driver
==
0000:01:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection 10fb if=enp1s0f1␣
→˓drv=vfio-pci unused=igb_uio,uio_pci_generic,ixgbe

If the bind was successful, the output will show drv=vfio-pci.

24.3.3 EAL Parameters

EAL (Environmental Abstraction Layer) Parameters are used in DPDK to provide a set of functions and
abstractions for common environment-related tasks such as memory allocation, thread management, and
initialization. The DPDK documentation covers EAL parameters here.

In the context of srsRAN we use the eal_args parameter in the configuration file to instruct DPDK
which cores to use for certain processes. If not configured correctly, then the CU/DU will not exploit
the improvements in performance that comes with using DPDK. This is because DPDK will only see a
single core and will not be able to run concurrent processes correctly.

The EAL parameters, as defined in the above document, are simply passed as as argument to the
eal_args in the CU/DU config. Any of the parameters mentioned in the document can be set in this
way.

24.3. Configuring DPDK 193

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

srsRAN Project Documentation

An example configuration is as follows:

hal:
eal_args: "--lcores '(0-1)@(0-23)'"

This will tell DPDK that EAL threads [0 - 1] should use cores [0 - 23]. This is assuming the CU/DU is
running on a machine with 24 cores.

Another example is:

hal:
eal_args: "--lcores (0-1)@(0-23) -a 0000:52:00.0"

This configuration tells DPDK that EAL threads [0 - 1] should use cores [0 - 23] for the device bound to
the address [0000:52:00.0].

24.4 Running srsRAN with DPDK

Once DPDK has been installed and configured, running srsRAN is the same as a vanilla configuration.
If DPDK is running with srsRAN correctly you should see the following console output:

EAL: Detected CPU lcores: 24
EAL: Detected NUMA nodes: 1
EAL: Detected shared linkage of DPDK
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'VA'
EAL: VFIO support initialized
EAL: Using IOMMU type 1 (Type 1)
EAL: Probe PCI driver: net_bnxt (14e4:1751) device: 0000:18:00.2 (socket 0)
TELEMETRY: No legacy callbacks, legacy socket not created

--== srsRAN gNB (commit) ==--

Connecting to AMF on 192.168.20.100:38412
Initializing the Open FrontHaul Interface for sector#0: ul_compr=[BFP,9], dl_
→˓compr=[BFP,9], prach_compr=[BFP,9] prach_cp_enabled=true, downlink_
→˓broadcast=false.
Cell pci=1, bw=100 MHz, dl_arfcn=625000 (n78), dl_freq=3375.0 MHz, dl_ssb_
→˓arfcn=622272, ul_freq=3375.0 MHz

==== gNodeB started ===
Type <t> to view trace

The first lines beginning with EAL tell us that the CU/DU is successfully running with DPDK, specifically
the third line which reads Detected shared linkage of DPDK`.

194 Chapter 24. srsRAN gNB with DPDK

CHAPTER

TWENTYFIVE

O-RAN 7.2 RU GUIDE

25.1 Overview

The srsRAN Project supports both split 7.2 and split 8 fronthaul interfaces to Radio Units (RUs). This
tutorial outlines the general steps required to interface an RU with the srsRAN CU/DU via split 7.2. For
more detailed instructions on specific O-RUs select an RU from this list.

Split 7.2 is an open specification published by the O-RAN Alliance aiming to ensure interoperability
between different DU and RU solutions.

The split 7.2 interface is supported in srsRAN through the Open Fronthaul (OFH) Library. Developed
by the SRS team, OFH is an open-source, portable library with minimal 3rd-party dependencies. It has
been designed to minimize the integration and configuration burden associated with using srsRAN with
3rd-party O-RUs.

25.2 Setup Considerations

This tutorial uses the following hardware:

• Server (Running srsRAN Project CU/DU)

– CPU: AMD Ryzen 7 5700G

– MEM: 64GB

– NIC: Intel Corporation 82599ES 10-Gigabit

– OS: Ubuntu 22.04 (5.15.0-1037-realtime)

• Fronthaul switch & synchronization

• RU

• COTS UE (OnePlus 9)

With the following software:

• srsRAN Project

• Open5GS 5G Core

195

https://github.com/srsran/srsRAN_project
https://open5gs.org/

srsRAN Project Documentation

25.2.1 CU/DU

The CU/DU is provided by the srsRAN Project gNB. The Open Fronthaul (OFH) Library provides the
necessary interface between the DU and the RU. The DU is connected to the fronthaul switch via SFP+
fiber cable.

25.2.2 RU

Users should chose the RU that best suits their usecase and specific requirements. There are various O-
RUs available with specific implementations for indoor and outdoor use, various price points, and various
hardware capabilities. A list of tested O-RUs can be found here, along with details on using them with
the srsRAN Project gNB.

For all set-ups the RU should be connected to the fronthaul switch via SFP+ fiber cable through the main
fronthaul interface.

25.2.3 5G Core

For this example we use the Open5GS 5G Core.

Open5GS is a C-language open-source implementation for 5G Core and EPC. The following links will
provide you with the information needed to download and setup Open5GS so that it is ready to use with
srsRAN:

• GitHub

• Quickstart Guide

196 Chapter 25. O-RAN 7.2 RU Guide

https://github.com/open5gs/open5gs
https://open5gs.org/open5gs/docs/guide/01-quickstart/

srsRAN Project Documentation

25.2.4 Synchronization

The split 7.2 interface requires tight timing synchronization between the DU and RU. O-RAN WG 4
has defined various synchronization methods for use with Open Fronthaul. These are outlined in O-
RAN.WG4.CUS.0-R003-v11.00 Section 11.

In this setup we use LLS-C3. The LLS-C3 configuration enables the distribution of network timing
between central sites and remote sites from PRTC/T-GM to RU. In simpler terms, it allows the synchro-
nization of one or more PRTC/T-GM devices (serving as PTP master) in the fronthaul network to transmit
network timing signals to DU and RU components as seen in the figure above. In our setup the fronthaul
switch is acting as the PTP grandmaster (which is synchronized via GPS), providing timing to the RU
and the DU. These are connected to the SFP+ 10G ports on the switch via Ethernet.

Note: The OFH library supports all of the defined clock model and synchronization topologies defined
by O-RAN WG4. The use of LLS-C3 is specific to this example.

Switch

The chosen switch should be a timing-aware O-RAN switch & PTP grandmaster. This is used to provide
both clocking and timing synchronization to both the DU and RU.

25.3 Configuration

25.3.1 Switch

Refer to the specific Switch documentation to correctly configure it. Specifically any timing and routing
options that may need to be configured.

We recommend using the manufacturers documentation as well as the specific switch guide from SRS if
it is available in the Integration Guide.

25.3.2 CU/DU

NIC configuration

The DU machine should have jumbo frames enabled in the NIC and the PTP process should be checked
to make sure it is synchronized correctly.

To set the jumbo frames in the NIC use the following command for a temporary configuration:

ifconfig <eth0> mtu 9600 up

Where eth0 is the ethernet port for the SFP+ fiber cable that connects the DU to the fronthaul switch.

25.3. Configuration 197

srsRAN Project Documentation

PTP configuration

To start the PTP process in the DU, use the command below. The configuration file can be downloaded
here

./ptp4l -2 -i enp1s0f0 -f ./configs/default.cfg -m

You should then see the following output:

ptp4l[4321.966]: rms 6 max 14 freq -25784 +/- 9 delay 172 +/- 1
ptp4l[4323.091]: rms 5 max 10 freq -25778 +/- 8 delay 170 +/- 1
ptp4l[4324.216]: rms 6 max 11 freq -25781 +/- 9 delay 169 +/- 1
ptp4l[4325.341]: rms 5 max 10 freq -25783 +/- 8 delay 170 +/- 1

In the above output, the rms value can be used to determine if the PTP sync is correct, for this we look
for a value < 10.

Next, run:

./phc2sys -s enp1s0f0 -w -m -R 8 -f ./configs/default.cfg

You should then see the following output:

phc2sys[4348.303]: CLOCK_REALTIME phc offset -25 s2 freq +8026 delay ␣
→˓ 1467
phc2sys[4348.428]: CLOCK_REALTIME phc offset -11 s2 freq +8033 delay ␣
→˓ 1466
phc2sys[4348.553]: CLOCK_REALTIME phc offset -25 s2 freq +8016 delay ␣
→˓ 1396
phc2sys[4348.678]: CLOCK_REALTIME phc offset -5 s2 freq +8028 delay ␣
→˓ 1397

The first value here is used to determine if the PTP sync is correct, for this we look for a value < 100.

In both of the above commands enp1s0f0 is the network interface on our DU that gets the PTP sync.

srsRAN configuration

Sample configuration files for the CU/DU can be downloaded from here. There is an associated config-
uration file for each of the tested RUs.

The main configuration steps for the CU/DU occur in the ru_ofh field. Here the CU/DU is configured
to match the capabilities of the RU being used. All parameters should be configured specifically for each
RU.

See the specific RU guides in the Integration Guide for more information on configuring the CU/DU.

198 Chapter 25. O-RAN 7.2 RU Guide

https://github.com/srsran/srsRAN_Project/blob/main/configs/

srsRAN Project Documentation

25.3.3 RU

Refer to the specific RU documentation to correctly configure the RU. Ensure the RU is running before
trying to make any configuration changes.

We recommend using the manufacturers documentation as well as the specific RU guide from SRS if it
is available in the Integration Guide.

25.3.4 Core

For this setup Open5GS is used as the core, it is running in a docker.

The Open5GS 5G Core Quickstart Guide provides a comprehensive overview of how to configure
Open5GS to run as a 5G Core.

To configure the core correctly the following steps need to be taken:

• Configure the core to connect to the gNB, ensuring the correct AMF address for both.

• Configure the PLMN and TAC values so that they are the same as those present in the gNB con-
figuration.

• Register the ISIM credentials of the UE to the list of subscribers through the Open5GS WebUI.

25.4 Initializing the Network

25.4.1 RU

To bring up the RU simply boot it and ensure it is running correctly before attempting to connect the DU.
Check for RU synchronization and that the PTP process is running correctly.

These exact steps will vary depend on the RU being used.

25.4.2 CU/DU

Before running the CU/DU, make sure you have used the commands outlined in the configuration section
above to confirm the PTP sync between the DU and the fronthaul switch.

We can now run the CU/DU. First, navigate to srsRAN_Project/build/apps/gnb, and then run the gNB
with the following command:

sudo ./gnb -c <RU_CONFIG>

Where <RU_CONFIG> is the configuration file associated with the RU being used.

If the DU connects to the RU successfully, you will see the following output or similar:

--== srsRAN gNB (commit) ==--

Connecting to AMF on 10.53.1.2:38412
Initializing Open Fronthaul Interface with ul_comp=[BFP,9], dl_comp=[BFP,9],␣

(continues on next page)

25.4. Initializing the Network 199

https://open5gs.org/open5gs/docs/guide/01-quickstart/#:~:text=restart%20open5gs%2Dsgwud-,Setup%20a%205G%20Core,-You%20will%20need

srsRAN Project Documentation

(continued from previous page)

→˓prach_cp_enabled=false, downlink_broadcast=true.
Operating a 20MHz cell over a RU with instantaneous bandwidth of 100MHz.
Warning: Configured PRACH occasion collides with PUCCH RBs ([0..1) intersects␣
→˓[0..3)). Some interference between PUCCH and PRACH is expected.
Warning: Configured PRACH occasion collides with PUCCH RBs ([0..1) intersects␣
→˓[0..3)). Some interference between PUCCH and PRACH is expected.
Cell pci=1, bw=20 MHz, dl_arfcn=634548 (n78), dl_freq=3518.22 MHz, dl_ssb_
→˓arfcn=634464, ul_freq=3518.22 MHz

==== gNodeB started ===
Type <t> to view trace

25.5 Connecting to the Network

The following sections will outline two different approaches for connecting to the network. The first will
show how to connect to the network using a COTS UE, the second will show how to connect using the
AmariUE UE emulator from Amarisoft.

25.5.1 COTS UE

For full details on configuring and connecting a COTS UE to the srsRAN Project gNB see this tutorial.

For this setup a OnePlus 9 5G UE was used to connect to the network. The set-up and configuration of
the device is the same as in the above tutorial.

25.5.2 AmariUE

Additionally, third party UEs, such as AmariUE can be used to connect to the network.

For full details on configuring and connecting AmariUE to the srsRAN Project gNB see this tutorial.

Sending Traffic

Once connected to the network you can use iPerf to generate traffic. The following console trace was
taken from the gNB during bi-directional testing:

-------------DL----------------|------------------UL----------------
→˓----
pci rnti cqi mcs brate ok nok (%) | pusch mcs brate ok nok (%) ␣
→˓ bsr
1 4601 15 28 38M 1200 0 0% | 17.8 26 15M 493 107 17% ␣

→˓300k
1 4601 15 28 38M 1186 14 1% | 17.7 26 14M 488 112 18% ␣

→˓300k
1 4601 15 28 38M 1196 4 0% | 17.8 26 15M 506 94 15% ␣

(continues on next page)

200 Chapter 25. O-RAN 7.2 RU Guide

srsRAN Project Documentation

(continued from previous page)

→˓300k
1 4601 15 28 38M 1200 0 0% | 17.8 26 15M 501 99 16% ␣

→˓300k
1 4601 15 28 38M 1200 0 0% | 17.9 26 15M 498 102 17% ␣

→˓300k
1 4601 15 28 38M 1200 0 0% | 17.9 26 15M 497 103 17% ␣

→˓300k
1 4601 15 28 38M 1198 2 0% | 17.8 26 15M 497 103 17% ␣

→˓300k
1 4601 15 28 38M 1194 6 0% | 17.8 26 15M 495 105 17% ␣

→˓300k
1 4601 15 28 38M 1195 5 0% | 17.8 26 15M 510 89 14% ␣

→˓300k
1 4601 15 28 38M 1200 0 0% | 17.8 26 15M 503 98 16% ␣

→˓300k
1 4601 15 28 38M 1200 0 0% | 17.8 26 15M 495 105 17% ␣

→˓300k

25.6 Integration Guide

The Integration Guide aims to show the specific steps needed to successfully integrate COTS O-RUs and
switches with the srsRAN CU/DU for use in an O-RAN split 7.2 compliant network. All of the hardware
items listed here have been tested in-house.

These documents aim to show the specific steps needed to configure RUs and Switches for use with
the srsRAN CU/DU in an O-RAN Split 7.2 compliant network. For information on the overall network
configuration and architecture, see the O-RAN 7.2 Guide.

The following guides contain sample configuration and the necessary supplementary files where relevant.
These documents are intended to be used as guides, users should always refer back to the manufacturer’s
documentation for specific information regarding stable firmware versions, drivers, configuration files
and other hardware specific information. Questions relating to hardware specific issues should be directed
to the manufacturer of that hardware.

Tip: For the most up-to-date configuration changes, troubleshooting and information on potential issues
check the GitHub Discussions.

25.6. Integration Guide 201

https://github.com/srsran/srsRAN_Project/discussions

srsRAN Project Documentation

25.6.1 RUs

Benetel R550

Warning: This document is intended to be used as a guide. Variances in firmware and software
versions in local setups may require the sample configuration files provided to be changed. As a result
please closely follow the specific users guides of your RU in conjunction with this guide.

Overview

This guide provides further details on connecting the srsRAN CU/DU to an RU using the OFH Lib.
Specifically the RAN550 RU from Benetel. This is a Split 7.2x indoor RU.

Note: Please refer to the Benetel User Guide Documentation for up-to-date configuration and usage
guidelines, along with disclaimer and warranty information. Contact Benetel (sales@benetel.com) for
more information.

Configuration

Tip: For the most up-to-date configuration changes, troubleshooting and information on potential issues
check the GitHub Discussions

CU/DU

A sample configuration file for the DU can be downloaded from here. This configuration is specific to
the firmware version of the RU being used for this guide. As a result, you may need to modify this slightly
for your local setup.

The following excerpt shows how the DU is configured to communicate with the RU:

ru_ofh:
ru_bandwidth_MHz: 100 # RU instantaneous bandwidth.
t1a_max_cp_dl: 500 # Maximum T1a on Control-Plane for␣

→˓Downlink in microseconds.
t1a_min_cp_dl: 250 # Minimum T1a on Control-Plane for␣

→˓Downlink in microseconds.
t1a_max_cp_ul: 465 # Maximum T1a on Control-Plane for␣

→˓Uplink in microseconds.
t1a_min_cp_ul: 250 # Minimum T1a on Control-Plane for␣

→˓Uplink in microseconds.
t1a_max_up: 250 # Maximum T1a on User-Plane in␣

→˓microseconds.
(continues on next page)

202 Chapter 25. O-RAN 7.2 RU Guide

https://benetel.com/ran550/
https://www.benetel.com/
mailto:sales@benetel.com
https://github.com/srsran/srsRAN_Project/discussions
https://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_ru_ran550_tdd_n78_20mhz.yml

srsRAN Project Documentation

(continued from previous page)

t1a_min_up: 80 # Minimum T1a on User-Plane in␣
→˓microseconds.
is_prach_cp_enabled: false # Configures if Control-Plane messages␣

→˓should be used to receive PRACH messages.
is_dl_broadcast_enabled: true # Set to true for a workaround over a␣

→˓firmware bug in the RAN550 when operating in SISO mode.
compr_method_ul: bfp # Uplink compression method.
compr_bitwidth_ul: 9 # Uplink IQ samples bitwidth after␣

→˓compression.
compr_method_dl: bfp # Downlink compression method.
compr_bitwidth_dl: 9 # Downlink IQ samples bitwidth after␣

→˓compression.
compr_method_prach: bfp # PRACH compression method.
compr_bitwidth_prach: 9 # PRACH IQ samples bitwidth after␣

→˓compression.
enable_ul_static_compr_hdr: true # Configures if the compression header␣

→˓is present for uplink User-Plane messages (false) or not present (true).
enable_dl_static_compr_hdr: true # Configures if the compression header␣

→˓is present for downlink User-Plane messages (false) or not present (true).
iq_scaling: 1.5 # IQ samples scaling factor applied␣

→˓before compression, should be a positive value smaller than 10.
cells:
- network_interface: enp1s0f0 # Ethernet interface name used to␣

→˓communicate with the RU.
ru_mac_addr: 70:b3:d5:e1:5b:06 # RU MAC address.
du_mac_addr: 80:61:5f:0d:df:aa # DU MAC address.
vlan_tag: 5 # VLAN tag value.
prach_port_id: [4] # PRACH eAxC port value.
dl_port_id: [0] # Downlink eAxC port values.
ul_port_id: [0] # Uplink eAxC port values.

To expand on this, the following parameters are set in the cells field:

• network_interface : Network interface used to send the OFH packets.

• ru_mac_addr : MAC address of the RAN550.

• du_mac_addr : MAC address of the interface used by the gNB (it should be connected directly to
the RU or using a smart switch).

• vlan_tag : V-LAN identifier, should be set to the value configured in the switch settings

25.6. Integration Guide 203

srsRAN Project Documentation

RU

Refer to the Benetel User Guide documentation to apply the following configuration changes so that they
match your local setup. The following information is purely a guide and may not work for your specific
set up.

Ensure the RU is running before trying to make any configuration changes.

MAC Address : The MAC address of the DU must be configured in the RU for Control-Plane and User-
Plane traffic. In our configuration we use the same MAC address for both planes.

VLAN tag : In our setup the same VLAN ID is used for all network traffic, as only one MAC address is
used.

Compression : Currently only static compression headers are supported for this setup. We use BFP9
compression for all uplink and downlink channels. Refer to the Benetel User Guide for details on how to
configure compression in the RU.

Transmission Power : Depending on your setup, you may need to alter the transmission power of the
RU. For example, in a lab setting with the UE in close proximity to the RU, the default power settings
may result in UE saturation.

PRACH format : We recommend using long PRACH format. Use long_form_prach.sh script on the RU
or apply the required changes manually.

DL scaling : We use downlink scaling of 6dB.

TDD pattern : The TDD pattern should be changed to 6-3 format (DDDDDDSUUU). Download it
here.

The full init script we used for this set up can be found here.

UE

You can download the specific amariUE configuration used for this set up here.

Initializing and connecting to the network

Initializing and connecting to the network is done in the same way as outlined in the general 7.2 RU
guide.

Initializing the network

The following steps should be taken to initialize the network:

1. Ensure the R550 is online and that both the PTP process and RU synchronization are running
correctly.

2. Run the CU/DU, making sure that the PTP sync between the DU and the Falcon switch is successful
as previously outlined.

204 Chapter 25. O-RAN 7.2 RU Guide

srsRAN Project Documentation

sudo ./gnb -c du_R550_rf.yml

If the DU connects to the RU successfully, you will see the following output:

--== srsRAN gNB (commit) ==--

Connecting to AMF on 10.53.1.2:38412
Initializing Open Fronthaul Interface with ul_comp=[BFP,9], dl_comp=[BFP,9],␣
→˓prach_cp_enabled=false, downlink_broadcast=true.
Operating a 20MHz cell over a RU with instantaneous bandwidth of 100MHz.
Warning: Configured PRACH occasion collides with PUCCH RBs ([0..1) intersects␣
→˓[0..3)). Some interference between PUCCH and PRACH is expected.
Warning: Configured PRACH occasion collides with PUCCH RBs ([0..1) intersects␣
→˓[0..3)). Some interference between PUCCH and PRACH is expected.
Cell pci=1, bw=20 MHz, dl_arfcn=634548 (n78), dl_freq=3518.22 MHz, dl_ssb_
→˓arfcn=634464, ul_freq=3518.22 MHz

==== gNodeB started ===
Type <t> to view trace

Connecting to the network

You can now connect a UE to the network. This can either be done using a third party UE, such as
amariUE, or a COTS UE. See the main RU guide for details on this.

The specific amariUE configuration file for this setup was provided above.

25.6.2 Switches

Falcon-RX Switch

The Falcon-RX/812/G Switch is a 5G xHaul timing-aware O-RAN switch & PTP grandmaster. This is
used to provide both clocking and timing synchronization to both the DU and RU.

SyncCenter

The switch must be connected to an external clock source to ensure the PTP grandmaster is synchronized
correctly. Once connected it is important to check that the GPS has been locked correctly and an accurate
clock source is being provided. In this example a GPS reference is used.

25.6. Integration Guide 205

https://www.fibrolan.com/Falcon-RX

srsRAN Project Documentation

To do this, navigate to the FalconRX configuration GUI and go to Configuration > Timing > SyncCenter
and select GPS as the Sync Source Type. Once this is done, wait for the GPS to lock and synchronize
correctly. The SyncCenter will display green once it has successfully locked to the GPS signal. This is
shown in the above image.

PTP Clocks

Once the PTP grandmaster is successfully synchronized it must be configured correctly for use with the
DU and RU.

First, go to Configuration > Timing > PTP and add a new PTP Clock. Select Device Type: Master
Only and Profile: G8275.1. This is shown in the above image. After adding the PTP clock, click
on the Clock Instance that you want to edit.

206 Chapter 25. O-RAN 7.2 RU Guide

srsRAN Project Documentation

Once you have selected the Clock Instance you want to edit, set the VLAN ID to 1588 and activate all
ports that you want to serve with PTP. From now on the PTP is sent with VLAN ID 1588.

You should now save your configuration.

VLAN

Next, the VLANs must be configured correctly so as to allow the DU and RU to receive the PTP sync
from the grandmaster.

25.6. Integration Guide 207

srsRAN Project Documentation

Go to Configuration > VLANs > Configuration to correctly configure the VLAN settings. First, set
Allowed Access VLANs: as 1,2. Next, configure the ports you want to use as Trunk ports, set the
Port VLAN as 1588, and set Egress Tagging as Untag Port VLAN. In the Allowed VLANs field you
can set a range or specify specific VLANs. For example, here we are specifying 1,2,1588. You must
include 1588 otherwise the DU and RU will not correctly receive the PTP sync.

208 Chapter 25. O-RAN 7.2 RU Guide

CHAPTER

TWENTYSIX

O-RAN NEARRT-RIC AND XAPP

26.1 Overview

This application note shows how to use the E2 interface exposed by the srsRAN Project gNodeB. For
this purpose, we use third-party O-RAN Alliance compliant NearRT-RIC and xApp provided in FlexRIC
framework.

Our E2 interface implementation is based on the following O-RAN technical specifications:

• O-RAN.WG3.E2AP-R003-v03.00

• O-RAN.WG3.E2SM-R003-v03.00

• O-RAN.WG3.E2SM-KPM-R003-v03.00

• O-RAN.WG3.E2SM-RC-R003-v03.00

26.2 Setup Overview

The following diagram presents the setup architecture used in this application note:

209

https://www.o-ran.org/
https://gitlab.eurecom.fr/mosaic5g/flexric

srsRAN Project Documentation

26.3 Hardware and Software Overview

For this application note, the following hardware and software are used:

• PC with Ubuntu 22.04.1 LTS

• srsRAN Project

• srsRAN UE (srsRAN 4G 23.04 or later)

• ZeroMQ

• FlexRIC

• Open5GS 5G Core

• Wireshark (Version 4.0.7 or later)

26.3.1 Limitations

While our ultimate goal is to fully support the E2 interface, it is still under development and its cur-
rent version is limited in features and operation. Specifically, the current E2 interface implementation
supports only E2SM_KPM and E2SM_RC service models with the following limitations:

• E2SM_RC service model:

– Only Control Service Style 2 is supported

• E2SM_KPM service model:

– All Report Service Styles (1 - 5) are supported

– Monitoring period limited to 1s

– The following 3 ‘dummy’ DU metrics are exposed (they will be removed in future releases):

∗ CQI

∗ RSRP

∗ RSRQ

– The following 6 ORAN defined metrics are expose:

∗ DRB.UEThpDl - DL throughput

∗ DRB.UEThpUl - UL throughput

∗ DRB.RlcPacketDropRateDl - UL packet success rate

∗ DRB.PacketSuccessRateUlgNBUu - RLC DL packet drop rate

∗ DRB.RlcSduTransmittedVolumeDL - RLC DL transmitted SDU volume

∗ DRB.RlcSduTransmittedVolumeUL - RLC UL transmitted SDU volume

210 Chapter 26. O-RAN NearRT-RIC and xApp

https://github.com/srsran/srsRAN_project
https://github.com/srsran/srsRAN_4G
https://zeromq.org/
https://gitlab.eurecom.fr/mosaic5g/flexric
https://open5gs.org/

srsRAN Project Documentation

26.4 Installation

26.4.1 FlexRIC

The FlexRIC framework provides O-RAN Alliance compliant E2 node Agent emulators, a NearRT-RIC
and xApps written in C/C++ and Python. For the purpose of presenting the usage of E2 interface exposed
by srsRAN Project gNodeB, we use the NearRT-RIC and an example KPM monitoring xApp from the
FlexRIC framework.

The O-RAN specifications are evolving and FlexRIC is under development with multiple tracks (i.e. git
branches). In this tutorial, we use br-flexric branch (commit: 1a3903a7).

FlexRIC requires the following dependencies to be installed (see FlexRIC Installation Guide for details):

sudo apt-get update
sudo apt-get install swig libsctp-dev python3 cmake-curses-gui python3-dev␣
→˓pkg-config libconfig-dev libconfig++-dev

The FlexRIC installation is performed as follows:

git clone https://gitlab.eurecom.fr/mosaic5g/flexric.git
cd flexric
git checkout br-flexric
mkdir build
cd build
cmake -DKPM_VERSION=KPM_V2 -DXAPP_DB=NONE_XAPP ../
make
sudo make install

Note that while by default Ubuntu 22.04.1 uses gcc-11, the used FlexRIC version can be built only with
gcc-10. One possible way to switch gcc version is to use update-alternatives tool, for example:

sudo update-alternatives --config gcc

There are 3 choices for the alternative gcc (providing /usr/bin/gcc).

Selection Path Priority Status
--
0 /usr/bin/gcc-11 11 auto mode

* 1 /usr/bin/gcc-10 10 manual mode
2 /usr/bin/gcc-11 11 manual mode
3 /usr/bin/gcc-9 9 manual mode

Press <enter> to keep the current choice[*], or type selection number:

26.4. Installation 211

https://gitlab.eurecom.fr/mosaic5g/flexric
https://www.o-ran.org/
https://gitlab.eurecom.fr/mosaic5g/flexric/-/tree/br-flexric

srsRAN Project Documentation

26.4.2 Open5GS

For this example we are using Open5GS as the 5G Core.

Open5GS is a C-language Open Source implementation for 5G Core and EPC. The following links will
provide you with the information needed to download and set-up Open5GS so that it is ready to use with
srsRAN:

• GitHub

• Quickstart Guide

For the purpose of this application note, we will use a dockerized Open5GS version provided in srsRAN
Project at srsgnb/docker.

26.4.3 ZeroMQ

On Ubuntu, ZeroMQ development libraries can be installed with:

sudo apt-get install libzmq3-dev

Alternatively, ZeroMQ can also be built from source.

First, one needs to install libzmq:

git clone https://github.com/zeromq/libzmq.git
cd libzmq
./autogen.sh
./configure
make
sudo make install
sudo ldconfig

Second, install czmq:

git clone https://github.com/zeromq/czmq.git
cd czmq
./autogen.sh
./configure
make
sudo make install
sudo ldconfig

Finally, you need to compile srsRAN Project and srsRAN 4G (assuming you have already installed all
the required dependencies).

Note: If you have already built and installed srsRAN 4G and srsRAN Project prior to installing ZMQ
and other dependencies you will have to re-build both to ensure the ZMQ drivers have been recognized
correctly.

212 Chapter 26. O-RAN NearRT-RIC and xApp

https://github.com/open5gs/open5gs
https://open5gs.org/open5gs/docs/guide/01-quickstart/

srsRAN Project Documentation

26.4.4 srsRAN Project

For srsRAN Project, the following commands can be used to download and build from source:

git clone https://github.com/srsran/srsRAN_Project.git
cd srsRAN_Project
mkdir build
cd build
cmake ../ -DENABLE_EXPORT=ON -DENABLE_ZEROMQ=ON
make -j`nproc`

ZeroMQ is disabled by default, this is enabled when running cmake by including -DENABLE_EXPORT=ON
-DENABLE_ZEROMQ=ON.

Pay extra attention to the cmake console output. Make sure you read the following line:

...
-- FINDING ZEROMQ.
-- Checking for module 'ZeroMQ'
-- No package 'ZeroMQ' found
-- Found libZEROMQ: /usr/local/include, /usr/local/lib/libzmq.so
...

26.4.5 srsUE

If you have not already done so, install the latest version of srsRAN 4G and all of its dependencies. This
is outlined in the installation guide.

Please check our srsRAN 4G ZeroMQ Application Note for information on installing ZMQ and using it
with srsRAN 4G/ srsUE.

26.5 Configuration

Here, we use ZMQ-based setup, and hence the configuration files are based on those introduced in srsRAN
gNB with srsUE application note.

The following config files were modified to use ZMQ-based RF driver and enable E2 interface in the
srsRAN Project gNodeB:

• gNB config

• UE config

Details of the modifications made are outlined in the following sections. The description of the remaining
config parameters is available in srsRAN gNB with srsUE application note.

It is recommended you use these files to avoid errors while changing configs manually. Any configuration
files not included here do not require modification from the default settings.

26.5. Configuration 213

https://docs.srsran.com/projects/4g/en/latest/general/source/1_installation.html
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/zeromq/source/index.html

srsRAN Project Documentation

26.5.1 gNB

Here, we describe the gNB configuration parameters related to the E2 agent.

Enable E2 agents in all DUs and enable E2SM_KPM service module:

e2:
enable_du_e2: true # Enable DU E2 agent (one for each DU␣

→˓instance)
e2sm_kpm_enabled: true # Enable KPM service module
addr: 127.0.0.1 # RIC IP address
port: 36421 # RIC port

Enable E2AP packet captures and set the name of the output pcap file:

pcap:
e2ap_enable: true # Set to true to enable E2AP PCAPs.
e2ap_filename: /tmp/gnb_e2ap.pcap # Path where the E2AP PCAP is stored.

Enable Enable RLC metrics reporting that will feed E2SM_KPM service model with measurements data:

metrics:
rlc_json_enable: 1 # Enable RLC metrics reporting
rlc_report_period: 1000 # Set reporting period to 1s

26.6 Running the Network

The following order should be used when running the network:

1. Open5GS

2. NearRT-RIC

3. gNB

4. UE

5. Start IP traffic (e.g., ping)

6. xApp

26.6.1 Open5GS Core

srsRAN Project provides a dockerized version of the Open5GS. It is a convenient and quick way to start
the core network. You can run it as follows:

cd ./srsRAN_Project/docker
docker compose up --build 5gc

Note that we have already configured Open5GS to operate correctly with srsRAN Project gNB. Moreover,
the UE database is populated with the credentials used by our srsUE.

214 Chapter 26. O-RAN NearRT-RIC and xApp

srsRAN Project Documentation

26.6.2 NearRT-RIC

Start example NearRT-RIC provided in FlexRIC framework:

./flexric/build/examples/ric/nearRT-RIC

The NearRT-RIC console output should be similar to:

Setting the config -c file to /usr/local/etc/flexric/ric.conf
[LibConf]: loading service models from SM_DIR: /usr/local/lib/flexric/
[LibConf]: reading configuration for NearRT_RIC
[LibConf]: NearRT_RIC IP: 127.0.0.1
[LibConf]: E2_Port Port: 36421
[LibConf]: E42_Port Port: 36422
[NEAR-RIC]: nearRT-RIC IP Address = 127.0.0.1, PORT = 36421
[NEAR-RIC]: Initializing
[NEAR-RIC]: Loading SM ID = 3 with def = ORAN-E2SM-RC
[NEAR-RIC]: Loading SM ID = 142 with def = MAC_STATS_V0
[NEAR-RIC]: Loading SM ID = 148 with def = GTP_STATS_V0
[NEAR-RIC]: Loading SM ID = 146 with def = TC_STATS_V0
[NEAR-RIC]: Loading SM ID = 145 with def = SLICE_STATS_V0
[NEAR-RIC]: Loading SM ID = 143 with def = RLC_STATS_V0
[NEAR-RIC]: Loading SM ID = 2 with def = ORAN-E2SM-KPM
[NEAR-RIC]: Loading SM ID = 144 with def = PDCP_STATS_V0
[iApp]: Initializing ...
[iApp]: nearRT-RIC IP Address = 127.0.0.1, PORT = 36422
fd created with 6
[NEAR-RIC]: Initializing Task Manager with 2 threads

26.6.3 gNB

We run gNB directly from the build folder (the config file is also located there) with the following com-
mand:

sudo ./gnb -c gnb_zmq.yaml

The gNB console output should be similar to:

--== srsRAN gNB (commit 0b2702cca) ==--

Connecting to AMF on 10.53.1.2:38412
Available radio types: zmq.
Connecting to NearRT-RIC on 127.0.0.1:36421
Cell pci=1, bw=10 MHz, dl_arfcn=368500 (n3), dl_freq=1842.5 MHz, dl_ssb_
→˓arfcn=368410, ul_freq=1747.5 MHz

==== gNodeB started ===
Type <t> to view trace

The Connecting to AMF on 10.53.1.2:38412 message indicates that gNB initiated a connection
to the core. While, the Connecting to NearRT-RIC on 127.0.0.1:36421 message indicates that

26.6. Running the Network 215

srsRAN Project Documentation

gNB initiated a connection to the NearRT-RIC.

If the connection attempt is successful, the following (or similar) will be displayed on the NearRT-RIC
console:

Received message with id = 411, port = 1715
[E2AP] Received SETUP-REQUEST from PLMN 1. 1 Node ID 411 RAN type ngran_gNB
[NEAR-RIC]: Accepting RAN function ID 2 with def = ORAN-E2SM-KPM
[iApp]: no xApp connected, no need to generate E42 UPDATE-E2-NODE

26.6.4 srsUE

First, the correct network namespace must be created for the UE:

sudo ip netns add ue1

Next, we start srsUE. This is also done directly from within the build folder, with the config file in the
same location:

sudo ./srsue ue_zmq.conf

If srsUE connects successfully to the network, the following (or similar) should be displayed on the
console:

Built in Release mode using commit fa56836b1 on branch master.

Opening 1 channels in RF device=zmq with args=tx_port=tcp://127.0.0.1:2001,rx_
→˓port=tcp://127.0.0.1:2000,base_srate=11.52e6
Supported RF device list: UHD zmq file
CHx base_srate=11.52e6
Current sample rate is 1.92 MHz with a base rate of 11.52 MHz (x6 decimation)
CH0 rx_port=tcp://127.0.0.1:2000
CH0 tx_port=tcp://127.0.0.1:2001
Current sample rate is 11.52 MHz with a base rate of 11.52 MHz (x1 decimation)
Current sample rate is 11.52 MHz with a base rate of 11.52 MHz (x1 decimation)
Waiting PHY to initialize ... done!
Attaching UE...
Random Access Transmission: prach_occasion=0, preamble_index=0, ra-rnti=0x39,␣
→˓tti=334
Random Access Complete. c-rnti=0x4601, ta=0
RRC Connected
PDU Session Establishment successful. IP: 10.45.1.2
RRC NR reconfiguration successful.

It is clear that the connection has been made successfully once the UE has been assigned an IP, this is
seen in PDU Session Establishment successful. IP: 10.45.1.2. The NR connection is then
confirmed with the RRC NR reconfiguration successful. message.

216 Chapter 26. O-RAN NearRT-RIC and xApp

srsRAN Project Documentation

26.6.5 IP Traffic with ping

Ping is the simplest tool to test the end-to-end connectivity in the network, i.e., it tests whether the UE
and core can communicate. Here, we use it to generate traffic from UE, hence the gNB can measure data
transmission-related metrics (e.g., throughput).

To run ping from UE to the core, use:

sudo ip netns exec ue1 ping -i 0.1 10.45.1.1

Note that we set the ping interval to 0.1s to increase the traffic volume.

Example ping output:

PING 10.45.1.1 (10.45.1.1) 56(84) bytes of data.
64 bytes from 10.45.1.1: icmp_seq=1 ttl=64 time=32.2 ms
64 bytes from 10.45.1.1: icmp_seq=2 ttl=64 time=35.3 ms
64 bytes from 10.45.1.1: icmp_seq=3 ttl=64 time=38.2 ms
64 bytes from 10.45.1.1: icmp_seq=4 ttl=64 time=71.5 ms
64 bytes from 10.45.1.1: icmp_seq=5 ttl=64 time=32.9 ms

You can also ping the from core to the UE. First add a route to the UE on the host machine (i.e. the one
running the Open5GS docker container):

sudo ip ro add 10.45.0.0/16 via 10.53.1.2

Check the host routing table:

route -n

It should contain the following entries (note that Iface names might be different):

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.1 0.0.0.0 UG 100 0 0 eno1
10.45.0.0 10.53.1.2 255.255.0.0 UG 0 0 0 br-
→˓dfa5521eb807
10.53.1.0 0.0.0.0 255.255.255.0 U 0 0 0 br-
→˓dfa5521eb807
...

Next, add a default route for the UE as follows:

sudo ip netns exec ue1 ip route add default via 10.45.1.1 dev tun_srsue

Check the routing table of ue1:

sudo ip netns exec ue1 route -n

The output should be as follows:

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

(continues on next page)

26.6. Running the Network 217

srsRAN Project Documentation

(continued from previous page)

0.0.0.0 10.45.1.1 0.0.0.0 UG 0 0 0 tun_
→˓srsue
10.45.1.0 0.0.0.0 255.255.255.0 U 0 0 0 tun_
→˓srsue

Now ping the UE:

ping -i 0.1 10.45.1.2

In addition, iperf tool can be used to generate traffic at higher data rates than ping. For example, to send
UL traffic from UE, one needs to run the following command:

sudo ip netns exec ue1 iperf -c 10.45.1.1 -u -b 10M -i 1 -t 60

26.6.6 xApp

We use an example xapp_oran_moni xApp from the FlexRIC framework. The application connects
to NearRT-RIC and uses E2SM_KPM service module to subscribe for measurement data using Report
Service Style 1. The metric names are listed in the config file that has to be passed to the xApp:

• xapp_mon_e2sm_kpm.conf

Specifically, with the provided config file, the xApp subscribes for two metrics, namely DRB.UEThpDl
and DRB.UEThpUl.

Start the xApp with the following command:

./flexric/build/examples/xApp/c/monitor/xapp_oran_moni -c ./xapp_mon_e2sm_kpm.
→˓conf

If xApp connects successfully to the NearRT-RIC, the following (or similar) should be displayed on the
xApp console:

Setting the config -c file to /home/pgawlowicz/workspace/srsran_project_docs/.
→˓/docs/source/tutorials/source/flexric/source/.config/xapp_mon_e2sm_kpm.conf
[LibConf]: loading service models from SM_DIR: /usr/local/lib/flexric/
[LibConf]: reading configuration for xApp
[LibConf]: NearRT_RIC IP: 127.0.0.1
[LibConf]: E42_Port Port: 36422
[LibConf]: Sub_ORAN_SM Name: KPM, Time: 1000
[LibConf]: format 1, RAN type ngran_gNB, actions = DRB.UEThpDl DRB.UEThpUl
[LibConf]: xApp_DB enable: 0
[LibConf]: xApp_DB user: (null), pass: (null)
[xAap]: Initializing ...
[xApp]: nearRT-RIC IP Address = 127.0.0.1, PORT = 36422
[E2-AGENT]: Opening plugin from path = /usr/local/lib/flexric/librc_sm.so
[E2-AGENT]: Opening plugin from path = /usr/local/lib/flexric/libmac_sm.so
[E2-AGENT]: Opening plugin from path = /usr/local/lib/flexric/libgtp_sm.so
[E2-AGENT]: Opening plugin from path = /usr/local/lib/flexric/libtc_sm.so
[E2-AGENT]: Opening plugin from path = /usr/local/lib/flexric/libslice_sm.so
[E2-AGENT]: Opening plugin from path = /usr/local/lib/flexric/librlc_sm.so

(continues on next page)

218 Chapter 26. O-RAN NearRT-RIC and xApp

srsRAN Project Documentation

(continued from previous page)

[E2-AGENT]: Opening plugin from path = /usr/local/lib/flexric/libkpm_sm.so
[E2-AGENT]: Opening plugin from path = /usr/local/lib/flexric/libpdcp_sm.so
[NEAR-RIC]: Loading SM ID = 3 with def = ORAN-E2SM-RC
[NEAR-RIC]: Loading SM ID = 142 with def = MAC_STATS_V0
[NEAR-RIC]: Loading SM ID = 148 with def = GTP_STATS_V0
[NEAR-RIC]: Loading SM ID = 146 with def = TC_STATS_V0
[NEAR-RIC]: Loading SM ID = 145 with def = SLICE_STATS_V0
[NEAR-RIC]: Loading SM ID = 143 with def = RLC_STATS_V0
[NEAR-RIC]: Loading SM ID = 2 with def = ORAN-E2SM-KPM
[NEAR-RIC]: Loading SM ID = 144 with def = PDCP_STATS_V0
[xApp]: DB_ENABLE = FALSE
[xApp]: do not initial database
[xApp]: E42 SETUP-REQUEST sent
adding event fd = 5 ev-> 5
[xApp]: E42 SETUP-RESPONSE received
[xApp]: xApp ID = 7
Registered E2 Nodes = 1
Pending event size before remove = 1
Registered node 0 ran func id = 2
[xApp]: reporting period = 1000 [ms]

The following (or similar) will be displayed on the NearRT-RIC console:

[iApp]: E42 SETUP-REQUEST received
[iApp]: E42 SETUP-RESPONSE sent

Next, the xApp sends the RIC Subscription Request message and upon successful subscription, it
will periodically receive RIC Indication messages with the recent measurements of the requested
metrics. The following (or similar) should be displayed on the xApp console:

Generated of req_id = 1
E42_RIC_SUBSCRIPTION_REQUEST 31
adding event fd = 5 ev-> 6
[xApp]: RIC SUBSCRIPTION REQUEST sent
[xApp]: SUBSCRIPTION RESPONSE received
Pending event size before remove = 1
[xApp]: Successfully SUBSCRIBED to ran function = 2

1, KPM v2 ind_msg latency > 943897800 s (minimum time unit is in␣
→˓second) from E2-node type 2 ID 411
meas record INTEGER_MEAS_VALUE value 28
meas record INTEGER_MEAS_VALUE value 8312

2, KPM v2 ind_msg latency > 927120585 s (minimum time unit is in␣
→˓second) from E2-node type 2 ID 411
meas record INTEGER_MEAS_VALUE value 4
meas record INTEGER_MEAS_VALUE value 11544

3, KPM v2 ind_msg latency > 910343370 s (minimum time unit is in␣
→˓second) from E2-node type 2 ID 411
meas record INTEGER_MEAS_VALUE value 4
meas record INTEGER_MEAS_VALUE value 11411

4, KPM v2 ind_msg latency > 893566155 s (minimum time unit is in␣
(continues on next page)

26.6. Running the Network 219

srsRAN Project Documentation

(continued from previous page)

→˓second) from E2-node type 2 ID 411
meas record INTEGER_MEAS_VALUE value 4
meas record INTEGER_MEAS_VALUE value 11746
...

Note that the metrics’ names are not shown in this xApp, but their order should be the same as the order of
metric listed in the xapp_mon_e2sm_kpm.conf config file (i.e., “DRB.UEThpDl” and “DRB.UEThpUl”).

The xApp can be stopped with CTRL+C signal. In such case, the following (or similar) should be dis-
played on the xApp console:

^Csignal 2 received !
CTRL+C detect
Remove handle number = 1
E42 RIC_SUBSCRIPTION_DELETE_REQUEST sdr->ric_id.ran_func_id 2 sdr->ric_id.
→˓ric_req_id 1
[xApp]: E42 SUBSCRIPTION-DELETE sent
adding event fd = 5 ev-> 8

9, KPM v2 ind_msg latency > 809680080 s (minimum time unit is in␣
→˓second) from E2-node type 2 ID 411
meas record INTEGER_MEAS_VALUE value 0
meas record INTEGER_MEAS_VALUE value 0
[xApp]: E42 SUBSCRIPTION DELETE RESPONSE received
Pending event size before remove = 1
[xApp]: Successfully received SUBSCRIPTION-DELETE-RESPONSE
Closing the agent socket: Socket operation on non-socket
[xApp]: Sucessfully stopped
Test xApp run SUCCESSFULLY

The following (or similar) will be displayed on the NearRT-RIC console:

[iApp]: SUBSCRIPTION-REQUEST xapp_ric_id->ric_id.ran_func_id 2
[E2AP] SUBSCRIPTION REQUEST generated
[NEAR-RIC]: nb_id 411 port = 1715
[NEAR-RIC]: nb_id 411 port = 1715
[NEAR-RIC]: SUBSCRIPTION DELETE REQUEST tx

[iApp]: RIC_SUBSCRIPTION_DELETE_REQUEST sent
[iApp]: RIC_SUBSCRIPTION_DELETE_RESPONSE sent

220 Chapter 26. O-RAN NearRT-RIC and xApp

srsRAN Project Documentation

26.7 E2AP packet analyzer

26.7.1 Enable E2AP PCAP

You can enable E2AP PCAPs by following this guide.

26.7.2 Live capture

Wireshark can be used to collect E2AP packets exchanged between E2 agent (located in srsRAN gNB)
and NearRT-RIC at runtime. This requires the following steps to be executed:

1. Start sniffing on the loopback interface.

2. Set filter to sctp.port == 36421.

3. Right-click on any packet -> Decode As.. -> set Current to E2AP

4. Now filter can be set to e2ap to show only E2AP messages.

Note that at least Wireshark version 4.0.7 is needed to correctly decode and display E2AP packets (i.e.,
earlier Wireshark versions do not support E2APv3 protocol and as a result will display information about
the Malformed Packets).

The figure below shows an example trace of E2AP packets.

26.7. E2AP packet analyzer 221

srsRAN Project Documentation

26.8 Troubleshooting

26.8.1 PCAP

E2AP dissector is still under development in Wireshark. Therefore, some fields are not decoded correctly
in Wireshark version 4.0.7. Currently, the best option is to compile Wireshark from the source code.
The screenshots presented in this tutorial were obtained with Wireshark version 4.1.0 (v4.1.0rc0-3390-
g4f4a54e6d3f9).

26.8.2 Core Network not running

If the dockerized version of Open5Gs fails to run it may be due to the ports set in docker-compose.yml
are already in use on your PC. For example, you may see an error like the following:

ERROR: for bdfcb7644f79_open5gs_5gc Cannot start service 5gc: driver failed␣
→˓programming external connectivity on endpoint open5gs_5gc␣
→˓(2919e37332feb0a3001c44985b7e3d310ae82b7adb0e2cb1d9c214ed29ff39fa): Error␣
→˓starting userland proxy: listen tcp4 0.0.0.0:3000: bind: address already in␣
→˓use

ERROR: for 5gc Cannot start service 5gc: driver failed programming external␣
→˓connectivity on endpoint open5gs_5gc␣
→˓(2919e37332feb0a3001c44985b7e3d310ae82b7adb0e2cb1d9c214ed29ff39fa): Error␣
→˓starting userland proxy: listen tcp4 0.0.0.0:3000: bind: address already in␣
→˓use
ERROR: Encountered errors while bringing up the project

In this case, the docker-compose file can be modified so that a different host port is used as 3000 is
already in use. To do this, line 40 of the docker-compose.yml file can be update to use 3001 as the host
port:

services:
5gc:

container_name: open5gs_5gc
build:
context: open5gs
target: open5gs
args:

OS_VERSION: "22.04"
OPEN5GS_VERSION: "v2.6.1"

environment:
MONGODB_IP: ${MONGODB_IP:-127.0.0.1}
SUBSCRIBER_DB: ${SUBSCRIBER_DB:-001010123456780,

→˓00112233445566778899aabbccddeeff,opc,63bfa50ee6523365ff14c1f45f88737d,8000,
→˓9,10.45.1.2}

OPEN5GS_IP: ${OPEN5GS_IP:-10.53.1.2}
UE_IP_BASE: ${UE_IP_BASE:-10.45.0}
DEBUG: ${DEBUG:-false}

privileged: true
ports:

(continues on next page)

222 Chapter 26. O-RAN NearRT-RIC and xApp

srsRAN Project Documentation

(continued from previous page)

- - "3000:3000/tcp"
+ - "3001:3000/tcp"

Uncomment port to use the 5gc from outside the docker network
#- "38412:38412/sctp"

command: 5gc -c open5gs-5gc.yml
healthcheck:
test: ["CMD-SHELL", "nc -z 127.0.0.20 7777"]
interval: 3s
timeout: 1s
retries: 60

networks:
ran:
ipv4_address: ${OPEN5GS_IP:-10.53.1.2}

26.8.3 UE issues

If the UE cannot connect to the network, ensure that the correct cell_cfg parameters are set in the gNB.

If the UE is connecting, but there is no PDU session being established you should check the following:

• The APN configuration is the same across both the UE and Core

• You are using the latest version of srsUE

• IP Forwarding for the core has been enabled, you can do this by following this guide.

• IP Forwarding for the UE has been enabled, see the following section

26.8.4 UE IP Forwarding

To ensure that the UE traffic is sent correctly to the internet the correct IP forwarding must be enabled. IP
Forwarding should be enabled on the host machine, i.e. the one running the Open5GS docker container.
This can be done with the following command:

sudo sysctl -w net.ipv4.ip_forward=1
sudo iptables -t nat -A POSTROUTING -o <IFNAME> -j MASQUERADE

Where <IFNAME> is the name of the interface connected to the internet.

To check that this has been configured correctly run the following command:

sudo ip netns exec ue1 ping -i 1 8.8.8.8

If the UE can ping the Google DNS, then the internet can be successfully accessed.

26.8. Troubleshooting 223

https://open5gs.org/open5gs/docs/guide/01-quickstart/#:~:text=Adding%20a%20route%20for%20the%20UE%20to%20have%20WAN%20connectivity

srsRAN Project Documentation

26.8.5 2nd Open5GS instance (installed manually)

The routing entries on the host PC for IPs: 10.45.0.0 and 10.53.1.0 should use the same interface, e.g.:

route -n

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.1 0.0.0.0 UG 100 0 0 eno1
10.45.0.0 10.53.1.2 255.255.0.0 UG 0 0 0 br-
→˓dfa5521eb807
10.53.1.0 0.0.0.0 255.255.255.0 U 0 0 0 br-
→˓dfa5521eb807
...

However, if a second instance of Open5GS (that was installed manually) is running on the host PC, the
route to 10.45.0.0 goes to ogstun interface. For this reason, a UE cannot access the Internet, as the host
will send packets to the manually installed Open5GS version. To solve this routing issue, you can disable
(or even remove) the manually installed Open5GS – please check sections 6 and/or 7 of the Open5GS
tutorial. In addition, you might need to disable the ogstun interface with the following command:

sudo ifconfig ogstun 0.0.0.0 down

26.8.6 RIC running on a different machine

If you are running your RIC on a different machine, you will need to correctly configure the E2
bind_addr parameter in the gNB config file. This is shown in the example config, with the line com-
mented out. If you are running the RIC on a separate machine simply uncomment this option.

224 Chapter 26. O-RAN NearRT-RIC and xApp

https://open5gs.org/open5gs/docs/guide/01-quickstart/
https://open5gs.org/open5gs/docs/guide/01-quickstart/

CHAPTER

TWENTYSEVEN

MATLAB TESTING TOOLS

27.1 Overview

This tutorial explains the main features of srsRAN-matlab, a MATLAB-based project for testing srsRAN
Project. More specifically, this tutorial will show how to generate a new set of test vectors for the srsRAN
Project tests, how to analyze the uplink IQ samples recorded by srsRAN gNB, and how to run end-to-end,
link-level simulations for testing PHY components of srsRAN Project. This will be done across three
independent sections.

srsRAN-matlab offers three main tools: the test vector generators, the uplink analyzers and the link-level
simulators.

27.1.1 Test Vector Generation

Test vectors are mainly used to test, develop and debug the PHY components of the srsRAN Project. This
tutorial will show how to generate the set of vectors used for unit testing inside the srsRAN repository.
As well as outlining how to generate a new set of random vectors for broadening the extent of the tests.

27.1.2 Signal Analyzers

The signal analyzers are useful for testing the uplink chain of the gNB. Specifically, they provide visual
hints about the signal quality in the uplink slots.

27.1.3 Simulators

The simulators can be used to estimate the performance of the PHY uplink channels under different
configurations and channel conditions provided by MATLAB’s 3GPP-compliant models.

27.2 Set-Up Considerations

For this application note, the following hardware and software are used:

• A PC with Ubuntu 22.04.3 LTS

• srsRAN-matlab

• srsRAN Project

• MathWorks MATLAB (R2022b or R2023a) with the 5G Toolbox

225

https://github.com/srsran/srsRAN_matlab
https://github.com/srsran/srsRAN_matlab
https://github.com/srsran/srsRAN_project
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/5g.html?s_tid=srchtitle_site_search_1_5g%20toolbox

srsRAN Project Documentation

Note: Running the srsRAN-matlab testing suite requires a working copy of MATLAB and its 5G Tool-
box

27.3 Installation

Assuming that srsRAN Project and MATLAB have both been downloaded and installed, the next step is
to download srsRAN-matlab.

This can be done with the following command:

git clone https://github.com/srsran/srsRAN_matlab.git

Note: This tutorial assumes that srsRAN Project is installed in the users come directory.

Once it has been downloaded, the working directory for srsRAN-matlab should be added to MATLAB’s
search path. This can be done from the MATLAB console with the following command:

cd ~/srsRAN_matlab
addpath .

To verify you have added srsRAN-matlab successfully to MATLAB’s search path, run the following
command (again from the MATLAB console):

runtests('unitTests', Tag='matlab code')

If successful, the following output should be shown at the end of the console output:

ans =

1x94 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration
Details

Totals:
94 Passed, 0 Failed, 0 Incomplete.
42.2176 seconds testing time.

Test Vectors

Analyzers

Simulators

226 Chapter 27. MATLAB Testing Tools

srsRAN Project Documentation

The PHY components of srsRAN Project are tested by feeding each component with vectors of input
data and comparing the resulting output with their expected values. In srsRAN Project, the test vectors
for a PHY component usually consist of a number of binary files with input and output data, and a single
shared header file that describes the test set-up and the content of the binary files. The binary files are
packed in a single tarball. For example, the test vectors of the channel estimator are provided by the files
port_channel_estimator_test_data.h and port_channel_estimator_test_data.tar.gz in
~/srsRAN_Project/tests/unittests/phy/upper/signal_processors.

The files srs<ComponentName>Unittest.m in the main directory of srsRAN-matlab provide the
classes for generating such PHY input-output test vectors. This is done by leveraging MATLAB 5G
Toolbox. These classes inherit from the MATLAB matlab.unittest.TestCase class, meaning all of
the tools within MATLAB’s unit testing framework can be used with them. To facilitate the generation
of test vectors, a simplified interface is provided with srsRAN-matlab.

To generate the test vectors for all PHY components the following code needs to be run from the MAT-
LAB console:

runSRSRANUnittest('all', 'testvector')

This will generate a .h and .tar.gz file for each of the PHY components and place them in the folder
~/srsRAN_matlab/testvector_outputs..

The test vectors for a single PHY component can also be generated. This is done by replacing allwith the
name of the desired component, as per its declaration in ~/srsRAN_Project/include/srsran/. For
example, the test vectors for the channel estimator, whose interface is declared in ~/srsRAN_Project/
include/srsran/phy/upper/signal_processors/port_channel_estimator.h, can be gener-
ated with the following command:

runSRSRANUnittest('port_channel_estimator', 'testvector')

Once the test vectors have been generated, the pairs of .h and tar.gz files in the testvector_outputs
folder can be transferred to the srsRAN Project folder with the MATLAB command:

srsTest.copySRStestvectors('testvector_outputs', '~/srsRAN_Project/')

This command will automatically copy all test vectors to the proper subdirectory inside ~/
srsRAN_Project/tests/unittests/phy.

By default, executing runSRSRANUnittest will reproduce the same test vectors as the ones provided
with the srsRAN Project repository. To generate a random set of vectors, we simply need to add the
RandomShuffle option. This can be done with the following command:

runSRSRANUnittest('all', 'testvector', RandomShuffle=true)

srsRAN-matlab provides some tools to analyze the signal received by the srsRAN gNB and help debug-
ging the uplink channels. These can be found in apps/analyzers. In this tutorial, we will focus on
the analyzer for PUSCH transmissions; for the other analyzers, which are very similar, please follow the
instruction in their help text.

The following shows some of the other analyzer options:

% The Resource Grid analyzers only plots the energy map of a slot.
>> help srsResourceGridAnalyzer

(continues on next page)

27.3. Installation 227

srsRAN Project Documentation

(continued from previous page)

% For analyzing PUCCH transmissions.
>> help srsPUCCHAnalyzer

% For analyzing PRACH transmissions.
>> help srsPRACHAnalyzer

To use the PUSCH analyzer, the gNB needs to be configured to collect IQ samples. This can be done
with by adding the following to the gNB configuration file:

log:
filename: /tmp/gnb.log # save the log to a␣

→˓specified file
phy_level: debug # debug log level for PHY␣

→˓layer set to debug
phy_rx_symbols_filename: /tmp/iq.bin # save IQ samples to a␣

→˓specified file

The gNB can then be run as normal. The IQ samples will then be generated. This can be done with the
following command:

sudo ./gnb -c config.yml

Note: The generated IQ samples will occupy a large amount of disk space. It is recommended to not
run the gNB with this configuration for too long.

After running the gNB, open the gnb.log and locate a PUSCH transmission to analyze. The following
example shows the PUSCH transmission that will be analyzed in this tutorial:

2023-10-08T19:14:54.738749 [Upper PHY] [I] [690.17] RX_SYMBOL: sector=0␣
→˓offset=79705 size=8568
2023-10-08T19:14:54.738854 [UL-PHY1] [D] [690.17] PUSCH: rnti=0x4601 h_
→˓id=0 prb=[3, 6) symb=[0, 14) mod=QPSK rv=0 tbs=11 crc=OK iter=1.0 sinr=20.
→˓1dB t=182.0us

rnti=0x4601
h_id=0
bwp=[0, 51)
prb=[3, 6)
symb=[0, 14)
oack=0
ocsi1=0
part2=entries=[]
alpha=0.0
betas=[0.0, 0.0, 0.0]
mod=QPSK
tcr=0.1171875
rv=0
bg=2
new_data=true
n_id=1

(continues on next page)

228 Chapter 27. MATLAB Testing Tools

srsRAN Project Documentation

(continued from previous page)

dmrs_mask=00100001000100
n_scr_id=1
n_scid=false
n_cdm_g_wd=2
dmrs_type=1
lbrm=3168bytes
slot=690.17
cp=normal
nof_layers=1
ports=0
dc_position=306
crc=OK
iter=1.0
max_iter=1
min_iter=1
nof_cb=1
sinr_ch_est=26.9dB
sinr_eq=23.9dB
sinr_evm[sel]=20.1dB
evm=0.06
epre=+22.7dB
rsrp=+22.7dB
t_align=-0.2us

Once the transmission has been located and selected, its description can be used to populate configuration
options in the srsRAN-matlab analyzer.

From the MATLAB console, run the following command:

cd apps/analyzers
[carrier, pusch, extra] = srsParseLogs

You will then see the following output:

Copy the relevant section of the logs to the system clipboard (typically␣
→˓select and Ctrl+C), then switch back to MATLAB and press any key.
Parsing the following log section:

You should then copy the selected PUSCH transmission details from the log file, and paste it directly into
the MATLAB console. The output should look like the following:

2023-10-08T19:14:54.738854 [UL-PHY1] [D] [690.17] PUSCH: rnti=0x4601 h_
→˓id=0 prb=[3, 6) symb=[0, 14) mod=QPSK rv=0 tbs=11 crc=OK iter=1.0 sinr=20.
→˓1dB t=182.0us
rnti=0x4601
h_id=0
bwp=[0, 51)
prb=[3, 6)
symb=[0, 14)
oack=0
ocsi1=0

(continues on next page)

27.3. Installation 229

srsRAN Project Documentation

(continued from previous page)

part2=entries=[]
alpha=0.0
betas=[0.0, 0.0, 0.0]
mod=QPSK
tcr=0.1171875
rv=0
bg=2
new_data=true
n_id=1
dmrs_mask=00100001000100
n_scr_id=1
n_scid=false
n_cdm_g_wd=2
dmrs_type=1
lbrm=3168bytes
slot=690.17
cp=normal
nof_layers=1
ports=0
dc_position=306
crc=OK
iter=1.0
max_iter=1
min_iter=1
nof_cb=1
sinr_ch_est=26.9dB
sinr_eq=23.9dB
sinr_evm[sel]=20.1dB
evm=0.06
epre=+22.7dB
rsrp=+22.7dB
t_align=-0.2us

The function will show the log for confirmation and ask for the sub-carrier spacing and the number of
RBs in the resource grid:

Do you want to continue? [Y]/N y
Subcarrier spacing in kHz: 30
Grid size as a number of RBs: 51

Finally, srsParseLogs returns an nrCarrierConfig object, carrier, an nrPUSCHConfig object, pusch,
and the extra structure with additional information about the PUSCH transport block. It should look like
the following:

carrier =

nrCarrierConfig with properties:

NCellID: 1
SubcarrierSpacing: 30

(continues on next page)

230 Chapter 27. MATLAB Testing Tools

srsRAN Project Documentation

(continued from previous page)

CyclicPrefix: 'normal'
NSizeGrid: 51
NStartGrid: 0

NSlot: 17
NFrame: 690

Read-only properties:
SymbolsPerSlot: 14

SlotsPerSubframe: 2
SlotsPerFrame: 20

pusch =

nrPUSCHConfig with properties:

NSizeBWP: 51
NStartBWP: 0
Modulation: 'QPSK'
NumLayers: 1

MappingType: 'A'
SymbolAllocation: [0 14]

PRBSet: [3 4 5]
TransformPrecoding: 0
TransmissionScheme: 'nonCodebook'

NumAntennaPorts: 1
TPMI: 0

FrequencyHopping: 'neither'
SecondHopStartPRB: 1

BetaOffsetACK: 20
BetaOffsetCSI1: 6.2500
BetaOffsetCSI2: 6.2500

UCIScaling: 1
NID: 1
RNTI: 17921

NRAPID: []
DMRS: [1x1 nrPUSCHDMRSConfig]

EnablePTRS: 0
PTRS: [1x1 nrPUSCHPTRSConfig]

extra =

struct with fields:

RV: 0
TargetCodeRate: 0.1172

TransportBlockLength: 88
dcPosition: 306

The final step is to run the PUSCH analyzer, providing as inputs the objects just created by
srsParseLogs, the path to the IQ record, the offset and the length of the slot (both expressed as a

27.3. Installation 231

srsRAN Project Documentation

number of IQ samples). Both the offset and the length of the slot can be found in the log file, on a line
like the following one

2023-10-08T19:14:54.738749 [Upper PHY] [I] [690.17] RX_SYMBOL: sector=0␣
→˓offset=79705 size=8568

Note: The slot ID ([690.17] in our example) should be the same as that of the PUSCH log.

The command to run the PUSCH analyzer from the MATLAB console is:

srsPUSCHAnalyzer(carrier, pusch, extra, '/tmp/iq.bin', 79705, 8568)
The block CRC is OK.

This should then output figures displaying the slot energy distribution, the magnitude of the estimated
channel, the phase of the estimated channel, the equalized constellation and the received soft bit distri-
bution.

The following figures show these:

Slot Energy Distribution Magnitude of the Estimated
Channel

Phase of the Estimated
Channel

This example demonstrates how to test the throughput and BLER performance of the srsRAN gNB’s
own PUSCH processor using srsRAN-matlab simulators. By leveraging MATLAB’s 5G Toolbox we can
build a simulation set-up that is as close as possible to the one required by 3GPP conformance tests (see
TS38.104 and TS38.141). Although not fully representative of a real-world deployment with RUs and
over-the-air transmission, these simulation are useful for obtaining a first estimation of the performance
of the system.

Compiling the MEXs

The inclusion of srsRAN Project PHY blocks into a MATLAB simulator is achieved by means of MEX
functions, which are small C++ libraries that can be called from MATLAB. Therefore, the first step for
running the srsRAN-matlab simulators is to build the MEX executables.

232 Chapter 27. MATLAB Testing Tools

https://www.mathworks.com/help/matlab/call-mex-file-functions.html
https://www.mathworks.com/help/matlab/call-mex-file-functions.html

srsRAN Project Documentation

First, we compile srsRAN Project with the ENABLE_EXPORT flag, to export (some of) its libraries for
external projects. This can be done from the command line with the following command:

cd ~/srsRAN_Project
cmake -B buildExport -DENABLE_EXPORT:BOOL=ON
cmake --build buildExport -j 'nproc'

This builds srsRAN Project inside buildExport and generates the file buildExport/srsran.cmake,
which provides all the details required to import the necessary srsRAN CMake targets from external
projects.

Note: The ENABLE_EXPORT flag implies the generation of position-independent code (with the -fPIC
compiler option) - as a result, you may experience reduced performance when running the gNB.

The MEX libraries should now be built for srsRAN-matlab. From the command line, run the following:

cd ~/srsRAN_matlab/+srsMEX/source
cmake -B buildMEX -DSRSRAN_BINARY_DIR:PATH="~/srsRAN_Project/buildExport" -
→˓DMatlab_ROOT_DIR:PATH="/path/to/MATLAB/R2023a"
cmake --build buildMEX -j 'nproc'

To check that the above was run successfully, execute the following command from the main srsRAN-
matlab directory:

runtests('unitTests', Tag='mex code')

This should output the following, or similar:

ans =

1x45 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration
Details

Totals:
6 Passed, 0 Failed, 39 Incomplete.
14.7124 seconds testing time.

You can then run:

runSRSRANUnittest('all', 'testmex')

If successful, the runSRSRANUnittestwill generate test vectors, these will be fed into the MEX versions
of the srsRAN Project PHY components. An output similar to the following will be shown:

27.3. Installation 233

srsRAN Project Documentation

Failure Summary:

Name ␣
→˓ ␣
→˓ Failed Incomplete Reason(s)

␣
→˓==

srsPRACHDetectorUnittest[RandomDefault=true#ext,outputPath=_home_david_
→˓Code_MATLAB_srsgnb_matlab_testvector_outputs#ext]/mexTest(DuplexMode=FDD,
→˓PreambleFormat=1,UseZCZ=false,nAntennas=1) X Filtered␣
→˓by assumption.

--
→˓--
→˓--
→˓--------

srsPRACHDetectorUnittest[RandomDefault=true#ext,outputPath=_home_david_
→˓Code_MATLAB_srsgnb_matlab_testvector_outputs#ext]/mexTest(DuplexMode=FDD,
→˓PreambleFormat=1,UseZCZ=false,nAntennas=2) X Filtered␣
→˓by assumption.

--
→˓--
→˓--
→˓--------

...

srsPRACHDetectorUnittest[RandomDefault=true#ext,outputPath=_home_david_
→˓Code_MATLAB_srsgnb_matlab_testvector_outputs#ext]/mexTest(DuplexMode=TDD,
→˓PreambleFormat=A1,UseZCZ=true,nAntennas=2) X Filtered␣
→˓by assumption.

--
→˓--
→˓--
→˓--------

srsPRACHDetectorUnittest[RandomDefault=true#ext,outputPath=_home_david_
→˓Code_MATLAB_srsgnb_matlab_testvector_outputs#ext]/mexTest(DuplexMode=TDD,
→˓PreambleFormat=A1,UseZCZ=true,nAntennas=4) X Filtered␣
→˓by assumption.

Where only Incomplete tests should show. If a test shows as Failed an error has occurred.

Running the PUSCH Simulator

In the MATLAB console, from the main srsRAN-matlab directory, a simulator object can be created as
follows:

cd apps/simulators/PUSCHBLER
sim = PUSCHBLER

This should give the following output:

234 Chapter 27. MATLAB Testing Tools

srsRAN Project Documentation

sim =

PUSCHBLER with properties:

Configuration
NCellID: 1

RNTI: 1
SubcarrierSpacing: 15

CyclicPrefix: 'Normal'
NSizeGrid: 52

PRBSet: [0 1 2 3 4 5 6 7 8 9 10 ...]
SymbolAllocation: [0 14]

MappingType: 'A'
DMRSConfigurationType: 1

DMRSLength: 1
DMRSAdditionalPosition: 1

DMRSTypeAPosition: 2
MCSTable: 'qam64'
MCSIndex: 0
NRxAnts: 1
NTxAnts: 1

NumLayers: 1
DelayProfile: 'AWGN'

PerfectChannelEstimator: true
EnableHARQ: false

ImplementationType: 'matlab'
QuickSimulation: true

DisplaySimulationInformation: false
DisplayDiagnostics: false

The simulation set-up can now be modified as desired by the user. In particular, the
ImplementationType should be changed to srs. Doing so allows the PHY components of srsRAN
Project to be used (via the MEX libraries above) instead of those from the MATLAB 5G Toolbox.

This can be done with the following command:

sim.ImplementationType = 'srs'

A simulation can then be run to evaluate the throughput and BLER of the PUSCH transmission. This
can be done by running sim([SNR Range], [# Frames]). An example simulation may look like the
following:

sim(-8:-3, 10)

The resulting throughput and BLER estimations can then be plot with the following command:

sim.plot()

This will give the following output:

27.3. Installation 235

srsRAN Project Documentation

236 Chapter 27. MATLAB Testing Tools

	Getting Started
	Features and Roadmap
	Current Features
	Coming Soon

	Contribution Guidelines
	FAQ
	1. What is a Copyright License Agreement (CLA) and why do I need one?
	2. How do I complete and submit the CLA?
	3. How will my contributions to the srsRAN Project be used?
	4. If I do not own the copyright in the entire work of authorship?

	Reporting
	Issues
	Vulnerabilities
	Support

	Release Notes
	23.10
	23.5
	23.3 (initial public release)

	Installation Guide
	Build Tools and Dependencies
	RF-drivers
	Clone and Build
	Packages
	Ubuntu
	Arch Linux

	PHY testvectors

	Running srsRAN Project
	Baseline Requirements
	System Preparation
	Running the gNB

	Console Reference
	Outputs
	Logs
	PCAPs
	MAC
	RLC
	NGAP
	GTP-U
	E1AP
	F1AP
	E2AP

	Configuration Reference
	Format
	Configuration Parameters

	Grafana Metrics GUI
	Configuration
	Docker
	srsRAN

	Launching GUI
	GUI Output

	Troubleshooting
	Performance Tuning
	CPU Performance Mode
	Performance Configuration Script

	USRP Configuration
	USRP Time Calibration

	Software Architecture
	CU-CP
	CU-UP
	DU-high
	DU Manager
	Radio Link Control (RLC)
	RLC Acknowledged Mode (AM)
	Data transmission
	Data reception
	ARQ and status reporting
	MAC buffer status reporting

	MAC
	Implementation
	RA Procedure

	DU-low

	Code Style Guide
	Language and libraries
	C & C++ version
	Use of the C++ standard library

	Mechanical source aspects
	Source Code Formatting
	Comments
	Comment Guidelines
	File Headers

	Header Guards
	#include Style
	Language and compiler aspects
	Treat compiler warnings as errors
	Code Portability
	Avoid RTTI and Exceptions
	Use of auto

	Style Aspects: High Level Issues
	Self-contained Headers
	Using #include Sparingly
	Using “Internal” Headers
	Use of namespace
	Using “early exits” and continue
	Avoid else after a return statement
	Use of Static Helper Functions

	Style Aspects: Low Level Issues
	Naming Conventions
	Assert and expect
	Do not use using namespace std
	Using Range for Loops
	Loop Structure
	Using Pre-increment
	Use of Anonymous Namespaces
	Using C++ Casts

	Recommendations
	Function and Class Length
	Scope
	Logical Operators
	Using References(&) Over Pointers(*)
	Const Correctness
	Avoid Complex Expressions
	Magic numbers
	Fixed Width Integer Types
	Function signatures
	Class Layout Example

	Self Generating Documentation
	General Aspects
	Files
	Classes and Structures
	Class Methods and Free Functions
	Class Data Members, Objects, Variables

	Commit Formatting

	Testing Policy
	Unit Tests
	Integration and Component Tests
	End-to-End (E2E) Tests
	Exploratory Tests

	O-RAN gNB Overview
	Introduction
	Split 7.2x Architecture
	srsRAN Project gNB
	Further Reading

	O-RAN gNB Components
	Centralized Unit (CU)
	Distributed Unit (DU)
	DU-high
	DU-low

	gNB Interfaces
	E1
	E2
	F1
	F1-C
	F1-U

	FAPI
	NG
	NG-C
	NG-U

	O1
	Open FrontHaul

	COTS UEs
	Tested COTS UEs
	User reported working UEs
	UE Capability Messages
	References

	srsRAN gNB with srsUE
	Overview
	Hardware and Software Overview
	srsRAN 4G
	Limitations

	Open5GS
	ZeroMQ

	Over-the-air Setup
	Configuration
	gNB
	srsUE

	Running the Network
	Open5GS Core
	gNB
	srsUE

	Testing the Network
	Routing Configuration
	Ping
	iPerf3

	ZeroMQ-based Setup
	Configuration
	gNB
	srsUE

	Running the Network
	Testing the Network
	Routing Configuration
	Ping
	iPerf3

	Multi-UE Emulation
	Configuration
	GNU-Radio Companion
	Open5GS Core
	gNB
	srsUE

	Running the Network
	Open5GS Core
	gNB
	srsUE
	GNU-Radio Companion
	Path-loss Control

	Testing the Network

	Troubleshooting
	Performance Issues
	Reference clock
	5G QoS Identifier
	UE does not get IP address
	UE IP Forwarding
	2nd Open5GS instance (installed manually)
	USRP X300/X310

	Limitations
	srsUE

	srsRAN gNB with COTS UEs
	Overview
	Setup Considerations
	Open5GS
	COTS UE
	External Clock

	Configuration
	gNB
	ISIM
	SIM Programming
	SUCI Configuration

	Open5GS
	amf.yml
	upf.yml
	User Database

	COTS UE
	Enable ISIM, 5G and data roaming
	Configure APN
	Force NR

	Connecting the COTS UE
	Setting-up the Network
	Check that the Core is running correctly
	Run the gNB

	Connecting to the Network

	Traffic and Testing
	Speed Test
	Video Test

	Troubleshooting
	Network Not Visible
	Unable to Attach
	No Internet Access
	UE Disconnects after a few Minutes

	Tested Devices

	srsRAN gNB with Amarisoft UE
	Overview
	Hardware and Software Overview
	Amarisoft UE
	Open5GS

	Installation
	ZeroMQ
	srsRAN Project gNB
	Amarisoft UE
	ZeroMQ driver for Amarisoft UE

	ZeroMQ-based Setup
	Configuration
	srsRAN Project gNB
	Amarisoft UE
	Open5GS 5G Core

	Running the 5G Network
	Open5gs 5G Core
	srsRAN Project gNB
	Amarisoft UE

	Testing the Network
	Ping
	iPerf
	Downlink
	Uplink

	iPerf Output
	gNB Console Output
	Packet Capture

	Configuring Amarisoft for multiple UEs

	Over-the-air Setup
	Configuration
	srsRAN Project gNB
	Amarisoft UE

	Running the 5G Network
	Open5gs 5G Core
	srsRAN Project gNB
	Amarisoft UE

	Testing the Network
	Ping
	iPerf
	iPerf Output
	gNB Console Output
	Packet Capture

	Troubleshooting
	ZMQ setup
	Reference clock for over-the-air
	5G QoS Identifier

	srsRAN gNB on Kubernetes
	Introduction
	Further Reading

	Setup Considerations
	CU/DU
	RU
	5G Core
	Clocking & Synchronization
	Switch

	Configuration
	Kubernetes Worker Node
	NIC Configuration

	PTP Grandmaster
	Helm Charts
	LinuxPTP Helm Chart
	srsRAN Project Helm Chart
	Core

	Initializing the Network
	RU
	Core
	DU
	PTP
	CU/DU

	Connecting to the Network
	Supported O-RUs

	srsRAN gNB with DPDK
	Introduction
	Further Reading

	Installing DPDK
	Configuring DPDK
	Configure Hugepages
	Binding to DPDK
	EAL Parameters

	Running srsRAN with DPDK

	O-RAN 7.2 RU Guide
	Overview
	Setup Considerations
	CU/DU
	RU
	5G Core
	Synchronization
	Switch

	Configuration
	Switch
	CU/DU
	NIC configuration
	PTP configuration
	srsRAN configuration

	RU
	Core

	Initializing the Network
	RU
	CU/DU

	Connecting to the Network
	COTS UE
	AmariUE
	Sending Traffic

	Integration Guide
	RUs
	Benetel R550
	Overview
	Configuration
	CU/DU
	RU
	UE

	Initializing and connecting to the network
	Initializing the network
	Connecting to the network

	Switches
	Falcon-RX Switch
	SyncCenter
	PTP Clocks
	VLAN

	O-RAN NearRT-RIC and xApp
	Overview
	Setup Overview
	Hardware and Software Overview
	Limitations

	Installation
	FlexRIC
	Open5GS
	ZeroMQ
	srsRAN Project
	srsUE

	Configuration
	gNB

	Running the Network
	Open5GS Core
	NearRT-RIC
	gNB
	srsUE
	IP Traffic with ping
	xApp

	E2AP packet analyzer
	Enable E2AP PCAP
	Live capture

	Troubleshooting
	PCAP
	Core Network not running
	UE issues
	UE IP Forwarding
	2nd Open5GS instance (installed manually)
	RIC running on a different machine

	MATLAB Testing Tools
	Overview
	Test Vector Generation
	Signal Analyzers
	Simulators

	Set-Up Considerations
	Installation

